blog navigation

Engineering

blog posts

  • Chemical and biomolecular engineering professor Damien Guironnet, right, and graduate student Dylan Walsh developed a new technique that allows them to program the size, shape and composition of soft materials.

    Researchers gain control over soft-molecule synthesis

    By gaining control over shape, size and composition during synthetic molecule assembly, researchers can begin to probe how these factors influence the function of soft materials. Finding these answers could help advance virology, drug delivery development and the creation of new materials. 

  • Chemistry professor M. Christina White, right, and graduate student Jinpeng Zhao developed a new catalyst that has the potential to advance the pace and efficiency of drug development.

    Researchers diversify drug development options with new metal catalyst

    A University of Illinois team of researchers led by chemistry professor M. Christina White has developed a new manganese-based catalyst that can change the structure of druglike molecules to make new drugs, advancing the pace and efficiency of drug development. 

  • Illinois researchers developed a technique to unmute silent genes in Streptomyces bacteria using decoy DNA fragments to lure away repressors. Pictured, from left: postdoctoral researcher Fang Guo, professor Huimin Zhao and postdoctoral researcher Bin Wang

    Unmuting large silent genes lets bacteria produce new molecules, potential drug candidates

    By enticing away the repressors dampening unexpressed, silent genes in Streptomyces bacteria, researchers at the University of Illinois have unlocked several large gene clusters for new natural products, according to a study published in the journal Nature Chemical Biology.

  • Illinois physics professor and Nobel Laureate Anthony Leggett talks about the 1938 discovery of superfluidity and its significance to low-temperature physics.

    Superfluidity: what is it and why does it matter?

    2018 marks the 80th anniversary of the landmark physics discovery of superfluidity. News Bureau physical sciences editor Lois Yoksoulian asked University of Illinois physics professor and 2003 Nobel Prize winner Anthony Leggett about the significance of the historic finding.

  • Illinois researchers developed a new drug candidate that targets a receptor inside sarcoma cancer cells. Pictured are graduate student Fatimeh Ostadhossein and bioengineering professor Dipanjan Pan.

    New drug seeks receptors in sarcoma cells, attacks tumors in animal trials

    A new compound that targets a receptor within sarcoma cancer cells shrank tumors and hampered their ability to spread in mice and pigs, a study from researchers at the University of Illinois reports.

  • Chemistry professor Prashant Jain is one of eleven Illinois faculty members on the Clarivate Analytics Highly Cited Researchers list, 2018.

    Eleven Illinois researchers rank among world’s most influential

    Eleven faculty members at the University of Illinois at Urbana-Champaign have been named to the 2018 Clarivate Analytics Highly Cited Researchers list.

  • University of Illinois engineering researcher Ann-Perry Witmer has developed a new computer algorithm that helps engineers who work internationally incorporate the influences of local values into their infrastructure designs.

    Diagnostic tool helps engineers to design better global infrastructure solutions

    Designing safe bridges and water systems for low-income communities is not always easy for engineers coming from highly industrialized places. A new discipline called contextual engineering helps engineers think beyond personal values, expectations and definitions of project success when tackling global infrastructure problems.

  • Bashir named College of Engineering dean

    Rashid Bashir, the executive associate dean and chief diversity officer of the Carle Illinois College of Medicine, will become the next dean of the College of Engineering at the University of Illinois at Urbana-Champaign effective Nov. 1.

  • Postdoctoral researcher Jaemin Kim, professor of chemical and biomolecular engineering Yang Hong and graduate student Pei-Chieh (Jack) Shih are part of a team that developed a new material that helps split water molecules for hydrogen fuel production.

    New, highly stable catalyst may help turn water into fuel

    Breaking the bonds between oxygen and hydrogen in water could be a key to the creation of hydrogen in a sustainable manner, but finding an economically viable technique for this has proved difficult. Researchers report a new hydrogen-generating catalyst that clears many of the obstacles – abundance, stability in acid conditions and efficiency.

  • Professor of chemical and biomolecular engineering Simon Rogers, left, postdoctoral researchers Jun Pong Park and Yongbeom Seo and professor of chemical and biomolecular engineering Hyunjoon Kong led an international team that developed hydrogen peroxide-bubbling microparticles that may help eradicate dangerous biofilms.

    Researchers develop microbubble scrubber to destroy dangerous biofilms

    Stiff microbial films often coat medical devices, household items and infrastructure such as the inside of water supply pipes, and can lead to dangerous infections. Researchers have developed a system that harnesses the power of bubbles to propel tiny particles through the surfaces of these tough films and deliver an antiseptic deathblow to the microbes living inside.

  • Researchers developed a rapid sensing gel to measure a molecular marker of eye injury in a teardrop. From left: Carle opthamologist Dr. Laura Labriola, Illinois visiting scholar Ketan Dighe and professor Dipanjan Pan.

    Color-changing sensor detects signs of eye damage in tears

    A new point-of-care rapid-sensing device can detect a key marker of eye injury in minutes – a time frame crucial to treating eye trauma.  

    University of Illinois researchers developed a gel laden with gold nanoparticles that changes color when it reacts with a teardrop containing ascorbic acid, released from a wound to the eye. In a new study published in the journal Biosensors and Bioelectronics, the researchers used the sensor, called OjoGel, to measure ascorbic acid levels in artificial tears and in clinical samples of fluid from patients’ eyes. 

  • Illinois researchers adapted CRISPR gene-editing technology to help a cell skip over mutated portions of genes. From left, professor Pablo Perez-Pinera, graduate student Alan Luu, professor Jun Song and graduate student Michael Gapinske.

    New CRISPR technique skips over portions of genes that can cause disease

    In a new study in cells, University of Illinois researchers have adapted CRISPR gene-editing technology to cause the cell’s internal machinery to skip over a small portion of a gene when transcribing it into a template for protein building. This gives researchers a way not only to eliminate a mutated gene sequence, but to influence how the gene is expressed and regulated.

    Such targeted editing could one day be useful for treating genetic diseases caused by mutations in the genome, such as Duchenne’s muscular dystrophy, Huntington’s disease or some cancers.

  • Civil and environmental engineering professor Jeremy Guest, left, and graduate student John Trimmer evaluated the feasibility of using human-derived waste as a safe and valuable nutrient commodity.

    Study: Human wastewater valuable to global agriculture, economics

    It may seem off-putting to some, but human waste is full of nutrients that can be recycled into valuable products that could promote agricultural sustainability and better economic independence for some developing countries.

  • Civil and environmental engineering professor Helen Nguyen has found that water-softening additives may increase the risk of pathogen release into drinking water by weakening the grip that bacteria have on pipe interiors.

    Chemicals that keep drinking water flowing may also cause fouling

    Many city drinking water systems add softening agents to keep plumbing free of pipe-clogging mineral buildup. According to new research, these additives may amplify the risk of pathogen release into drinking water by weakening the grip that bacteria – like those responsible for Legionnaires’ disease – have on pipe interiors.  

  • Materials science and engineering professor and department head David Cahill co-led research that helped optimize the synthesis of boron arsenide  a highly thermally conductive material  to help dissipate heat inside high-powered electronics.

    High-power electronics keep their cool with new heat-conducting crystals

    The inner workings of high-power electronic devices must remain cool to operate reliably. High internal temperatures can make programs run slower, freeze or shut down. Researchers at the University of Illinois at Urbana-Champaign and The University of Texas, Dallas have collaborated to optimize the crystal-growing process of boron arsenide – a material that has excellent thermal properties and can effectively dissipate the heat generated in electronic devices.

  • Chemical and biomolecular engineering professor Charles Schroeder, left, and graduate student Peter Zhou have found that single polymers  acting as individuals  work together to give synthetic materials macroscopic properties like viscosity and strength.

    Study reveals how polymers relax after stressful processing

    The polymers that make up synthetic materials need time to de-stress after processing, researchers said. A new study has found that entangled, long-chain polymers in solutions relax at two different rates, marking an advancement in fundamental polymer physics. The findings will provide a better understanding of the physical properties of polymeric materials and critical new insight to how individual polymer molecules respond to high-stress processing conditions.

  • Civil and environmental engineering professor Rosa Espinosa-Marzal, left, and graduate student Yijue Diao used nanoscale techniques to study earthquake dynamics and found that, under the right conditions, some rocks dissolve and may cause faults to slip.

    Study yields a new scale of earthquake understanding

    Nanoscale knowledge of the relationships between water, friction and mineral chemistry could lead to a better understanding of earthquake dynamics, researchers said in a new study. Engineers at the University of Illinois at Urbana-Champaign used microscopic friction measurements to confirm that, under the right conditions, some rocks can dissolve and may cause faults to slip. 

  • A synthetic DNA enzyme inserts into a cell membrane, causing lipids to shuffle between the inner and outer membrane layers.

    DNA enzyme shuffles cell membranes a thousand times faster than its natural counterpart

    A new synthetic enzyme, crafted from DNA rather than protein, flips lipid molecules within the cell membrane, triggering a signal pathway that could be harnessed to induce cell death in cancer cells. It is the first such synthetic enzyme to outperform its natural counterparts.

  • The Supreme Court punted on the issue of partisan gerrymandering in a June 18 ruling, but left the door open to future court action, says Wendy K. Tam Cho, a professor of political science, statistics, math and law at Illinois. She hopes to be part of the solution with research that employs algorithms and supercomputers to draw nonpartisan maps.

    What now with gerrymandering? Are algorithms part of the answer?

    The Supreme Court “punted” this week on the issue of partisan gerrymandering, but left the door open to future action. An Illinois professor hopes her research can be part of the solution.

  • Illinois researchers developed a tissue-imaging microscope that can image living tissue in real time and molecular detail, allowing them to monitor tumors and their environments as cancer progresses.

    New tissue-imaging technology could enable real-time diagnostics, map cancer progression

    A new microscope system can image living tissue in real time and in molecular detail, without any chemicals or dyes, report researchers at the University of Illinois.

  • Industrial and enterprise systems engineering professor Lavanya Marla and her team have developed models to help the airline industry create schedules that are less susceptible to delay and easier to fix once disrupted.

    New aircraft-scheduling models may ease air travel frustrations

    Flight schedules that allow for a little carefully designed wiggle room could prevent the frustration of cascading airport delays and cancellations. By focusing on the early phases of flight schedule planning and delays at various scales, researchers have developed models to help create schedules that are less susceptible to delays and easier to fix once disrupted.

  • Scott R. White, a pioneer of self-healing materials, died May 28 at age 55.

    Scott R. White, pioneer of self-healing materials, has died

    University of Illinois aerospace engineering professor Scott R. White, an innovator of self-healing and self-regulating materials, died Monday of cancer at age 55.

  • Freeform printing allows the researchers to make intricate structures, such as this model of a heart, that could not be made with traditional layer-by-layer 3-D printing. The structures could be used as scaffolds for tissue engineering or device manufacturing.

    3-D printed sugar scaffolds offer sweet solution for tissue engineering, device manufacturing

    University of Illinois engineers built a 3-D printer that offers a sweet solution to making detailed structures that commercial 3-D printers can’t: Rather than a layer-upon-layer solid shell, it produces a delicate network of thin ribbons of hardened isomalt, the type of sugar alcohol used to make throat lozenges.

    The water-soluble, biodegradable glassy sugar structures have multiple applications in biomedical engineering, cancer research and device manufacturing.

  • A photomicrograph of three 50-micron diameter rolled transformers developed by Illinois professor Xiuling Li’s team.

    Engineers on a roll toward smaller, more efficient radio frequency transformers

    The future of electronic devices lies partly within the “internet of things” – the network of devices, vehicles and appliances embedded within electronics to enable connectivity and data exchange. University of Illinois engineers are helping realize this future by minimizing the size of one notoriously large element of integrated circuits used for wireless communication – the transformer.

  • Illinois mechanical sciences and engineering professor Ning Wang, left, graduate students Erfan Mohagheghian and Gaurav Chaudhary, and postdoctoral researchers Junwei Chen and Jian Sun are measuring mechanical forces within cells to help unlock some of the mysteries of embryonic development and cancer.

    Elastic microspheres expand understanding of embryonic development and cancer cells

    A new technique that uses tiny elastic balls filled with fluorescent nanoparticles aims to expand the understanding of the mechanical forces that exist between cells, researchers report. A University of Illinois-led team has demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens. This research may unlock some of the mysteries related to embryonic development and cancer stem cells, i.e., tumor-repopulating cells.

  • University of Illinois researchers Philippe Geubelle, left, Scott White, Nancy Sottos and Jeffrey Moore have developed a new polymer-curing process that could reduce the amount of time and energy consumed compared with the current manufacturing process.

    New polymer manufacturing process saves 10 orders of magnitude of energy

    Makers of cars, planes, buses – anything that needs strong, lightweight and heat resistant parts – are poised to benefit from a new manufacturing process that requires only a quick touch from a small heat source to send a cascading hardening wave through a polymer. Researchers at the University of Illinois have developed a new polymer-curing process that could reduce the cost, time and energy needed, compared with the current manufacturing process.

  • Illinois researchers created a system using CRISPR technology to selectively turn off any gene in Saccharomyces yeast. Pictured, from left: chemical and biomolecular engineering professor Huimin Zhao, graduate students Mohammad Hamedi Rad, Zehua Bao, Pa Xue and Ipek Tasan.

    New CRISPR technology ‘knocks out’ yeast genes with single-point precision

    The CRISPR-Cas9 system has given researchers the power to precisely edit selected genes. Now, researchers have used it to develop a technology that can target any gene in the yeast Saccharomyces cerevisiae and turn it off by deleting single letters from its DNA sequence.

  • Aadeel Akhtar, an M.D./Ph.D. student at Illinois, developed a control algorithm to give prosthetic arm users reliable sensory feedback.

    Prosthetic arms can provide controlled sensory feedback, study finds

    Losing an arm doesn’t have to mean losing all sense of touch, thanks to prosthetic arms that stimulate nerves with mild electrical feedback. University of Illinois researchers have developed a control algorithm that regulates the current so a prosthetics user feels steady sensation, even when the electrodes begin to peel off or when sweat builds up. 

  • Students in an area middle school learned principles of coordinate math and computer programming by creating a laser light show in a collaborative project started by University of Illinois researchers in education and engineering. The team, from left, Joe Muskin, a visiting education coordinator in mechanical science and engineering; Adam Poetzel, an instructor of mathematics education in curriculum and instruction; and Arend van der Zande, a professor of mechanical science and engineering.

    Laser light show machine teaches students math, computer programming

    Laser light shows are no longer just the stage dressing for rock concerts. They’re also a fun way for local middle school students to learn the fundamentals of mathematics from educators and scientists at the University of Illinois.

  • Illinois architecture professor designs transformable, adaptive structures

    University of Illinois architecture professor Sudarshan Krishnan designs lightweight and transformable structures that can expand and collapse to adapt to a user’s needs.

  • Inspired by the eye of the morpho butterfly, a new camera that can see both visible and infrared light could help surgeons more easily identify cancerous tissue.

    New camera gives surgeons a butterfly’s-eye view of cancer

    Cancer lurking in tissue could be more easily found when looking through a butterfly’s eye.

  • University of Illinois electrical and computer engineering professor Viktor Gruev led a study demonstrating underwater global positioning made possible by a bio-inspired camera that mimics the eyes of a mantis shrimp.

    Shrimp-inspired camera may enable underwater navigation

    The underwater environment may appear to the human eye as a dull-blue, featureless space. However, a vast landscape of polarization patterns appear when viewed through a camera that is designed to see the world through the eyes of many of the animals that inhabit the water. 

  • Illinois civil and environmental engineering professor Wen-Tso Liu leads a team of researchers who are studying how microbial communities assemble within indoor plumbing systems.

    Researchers develop model to show how bacteria grow in plumbing systems

    Bacteria in tap water can multiply when a faucet isn’t used for a few days, such as when a house is vacant over a week’s vacation, a new study from University of Illinois engineers found. The study suggests a new method to show how microbial communities, including those responsible for illnesses like Legionnaires’ disease, may assemble inside the plumbing systems of homes and public buildings

  • A single circuit board, foreground, that when joined with others forms the experimental array of the quadrupole topological insulator.

    Researchers demonstrate existence of new form of electronic matter

    Researchers have produced a “human scale” demonstration of a new phase of matter called quadrupole topological insulators that was recently predicted using theoretical physics. These are the first experimental findings to validate this theory.

  • Agricultural and biological engineering professor Girish Chowdhary is leading a team that includes crop scientists, computer scientists and engineers in developing TerraSentia, a crop phenotyping robot.

    Ag robot speeds data collection, analyses of crops as they grow

    A new lightweight, low-cost agricultural robot, developed by a team of scientists at the University of Illinois, could transform data collection and field scouting for agronomists, seed companies and farmers.

     

  • Three U. of I. professors are recipients of Alfred P. Sloan Research Fellowships this year.

    Three Illinois professors named Sloan Research Fellows

    Three Illinois scientists are among 126 recipients of the 2018 Sloan Research Fellowships from the Alfred P. Sloan Foundation. According to the foundation, the awards “honor early career scholars whose achievements mark them as among the very best scientific minds working today.” Winners receive a two-year $65,000 fellowship to further their research.

  • Illinois professor Kyekyoon "Kevin" Kim, graduate student Benjamin Lew and research scientist Hyungsoo Choi developed a method to make it easier to transplant pancreatic islet cells from pigs to treat type I diabetes.

    Tiny drug-delivering capsules could sustain transplanted insulin-producing cells for diabetics

    A drug-carrying microsphere within a cell-bearing microcapsule could be the key to transplanting insulin-secreting pig pancreas cells into human patients whose own cells have been destroyed by type I diabetes.

  • Illinois chemistry and biomolecular engineering professor Ying Diao, right, and graduate student Hyunjoong Chung are part of a team that has identified a mechanism that triggers shape-memory in organic crystals used in plastic electronics.

    Shape-shifting organic crystals use memory to improve plastic electronics

    Researchers have identified a mechanism that triggers shape-memory phenomena in organic crystals used in plastic electronics. Shape-shifting structural materials are made with metal alloys, but the new generation of economical printable plastic electronics is poised to benefit from this phenomenon, too. Shape-memory materials science and plastic electronics technology, when merged, could open the door to advancements in low-power electronics, medical electronics devices and multifunctional shape-memory materials.

  • Illinois mechanical science and engineering student and lead author of a new study Benjamin Sohn holds a device that uses sound waves to produce optical diodes tiny enough to fit onto a computer chip.

    Researchers use sound waves to advance optical communication

    Illinois researchers have demonstrated that sound waves can be used to produce ultraminiature optical diodes that are tiny enough to fit onto a computer chip. These devices, called optical isolators, may help solve major data capacity and system size challenges for photonic integrated circuits, the light-based equivalent of electronic circuits, which are used for computing and communications.

  • Basar named College of Engineering interim dean

    Tamer Basar has been named the interim dean of the University of Illinois at Urbana-Champaign's College of Engineering effective Jan. 16, subject to approval of the University of Illinois Board of Trustees.

  • Illinois researchers developed nanoparticles that can target cancer stem cells (yellow), the rare cells within a tumor (blue) that can cause cancer to recur or spread.

    Drug-delivering nanoparticles seek and destroy elusive cancer stem cells

    Researchers are sending tiny drug-laden nanoparticles on a mission to seek and destroy cancer stem cells.

  • Illinois researchers used ultrafast pulses of tailored light to make neurons fire in different patterns, the first example of coherent control in a living cell.

    Carefully crafted light pulses control neuron activity

    Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

  • At normal tissue pH (left), the polymer does not kill bacteria. But in an acidic environment (right), it disrupts the H. pylori bacteria’s membranes to kill it.

    Shape-shifting agent targets harmful bacteria in the stomach

    A new shape-shifting polymer can target and kill Helicobacter pylori bacteria in the stomach without killing helpful bacteria in the gut.

  • University of Illinois bioengineers, from left, Ayanjeet Ghosh, professor Rohit Bhargava, Prabuddha Mukherjee and Sanghamitra Deb are using an updated infrared imaging technique to better examine and optimize a group of materials that could help solve some of the world’s most challenging energy, environmental and pharmaceutical challenges.

    Researchers put new spin on old technique to engineer better absorptive materials

    A team of University of Illinois bioengineers has taken a new look at an old tool to help characterize a class of materials called metal organic frameworks – MOFs for short. MOFs are used to detect, purify and store gases, and could help solve some of the worlds most challenging energy, environmental and pharmaceutical challenges – they can even pull water molecules straight from the air to provide relief from droughts.

  • Professors Marni Boppart and Wawrzyniec Lawrence Dobrucki found that stem cells helped alleviate complications from peripheral artery disease in diabetic mice.

    Stem cells from muscle could address diabetes-related circulation problems

    Stem cells taken from muscle tissue could promote better blood flow in patients with diabetes who develop peripheral artery disease, a painful complication that can require surgery or lead to amputation.

  • Inspired by the principles of natural polymer synthesis, Illinois chemical and biomolecular engineering professor Charles Sing, left, and graduate students Jason Madinya and Tyler Lytle co-authored a study that found they could create new synthetic materials by tuning the electrostatic charge of polymer chains.

    Electrostatic force takes charge in bioinspired polymers

    Researchers at the University of Illinois and the University of Massachusetts, Amherst have taken the first steps toward gaining control over the self-assembly of synthetic materials in the same way that biology forms natural polymers. This advance could prove useful in designing new bioinspired, smart materials for applications ranging from drug delivery to sensing to remediation of environmental contaminants.

  • Mechanical science and engineering professor Harley Johnson, left, and graduate student Brian McGuigan look to a common optical phenomenon for inspiration in electronics design.

    Researchers look to patterns to envision new engineering field

    The phenomenon that forms interference patterns on television displays when a camera focuses on a pattern like a person wearing stripes has inspired a new way to conceptualize electronic devices. Researchers at the University of Illinois are showing how the atomic-scale version of this phenomenon may hold the secrets to help advance electronics design to the limits of size and speed. 

  • Kristopher Kilian and his research team found stemlike cells at the edge of melanoma tumors secrete factors to promote blood-vessel growth, allowing the cancer to grow and spread.

    Stemlike cells at tumor perimeter promote new blood vessels to feed tumor growth

    Stemlike cells at the edge of melanoma tumors secrete factors to promote blood-vessel growth, allowing the cancer to grow and spread.

  • Illinois professor Pinshane Huang received a 2017 Packard Fellowship.

    Illinois scientist named Packard Fellow

    Pinshane Huang, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign, is among 18 early career researchers to receive 2017 Packard Fellowships from the David and Lucile Packard Foundation.

  • Illinois electrical and computer engineering professor Viktor Gruev, right, and graduate student Missael Garcia have developed a camera capable of sensing both color and polarization by mimicking the eye of the mantis shrimp that may improve early cancer detection and provide new understanding of underwater phenomena.

    Mantis shrimp-inspired camera enables glimpse into hidden world

    By mimicking the eye of the mantis shrimp, Illinois researchers have developed an ultra-sensitive camera capable of sensing both color and polarization. The bioinspired imager can potentially improve early cancer detection and help provide a new understanding of underwater phenomena, the researchers said.