blog navigation

Engineering

blog posts

  • Researchers develop microbubble scrubber to destroy dangerous biofilms

    Stiff microbial films often coat medical devices, household items and infrastructure such as the inside of water supply pipes, and can lead to dangerous infections. Researchers have developed a system that harnesses the power of bubbles to propel tiny particles through the surfaces of these tough films and deliver an antiseptic deathblow to the microbes living inside.

  • Color-changing sensor detects signs of eye damage in tears

    A new point-of-care rapid-sensing device can detect a key marker of eye injury in minutes – a time frame crucial to treating eye trauma.  

    University of Illinois researchers developed a gel laden with gold nanoparticles that changes color when it reacts with a teardrop containing ascorbic acid, released from a wound to the eye. In a new study published in the journal Biosensors and Bioelectronics, the researchers used the sensor, called OjoGel, to measure ascorbic acid levels in artificial tears and in clinical samples of fluid from patients’ eyes. 

  • New CRISPR technique skips over portions of genes that can cause disease

    In a new study in cells, University of Illinois researchers have adapted CRISPR gene-editing technology to cause the cell’s internal machinery to skip over a small portion of a gene when transcribing it into a template for protein building. This gives researchers a way not only to eliminate a mutated gene sequence, but to influence how the gene is expressed and regulated.

    Such targeted editing could one day be useful for treating genetic diseases caused by mutations in the genome, such as Duchenne’s muscular dystrophy, Huntington’s disease or some cancers.

  • Study: Human wastewater valuable to global agriculture, economics

    It may seem off-putting to some, but human waste is full of nutrients that can be recycled into valuable products that could promote agricultural sustainability and better economic independence for some developing countries.

  • Chemicals that keep drinking water flowing may also cause fouling

    Many city drinking water systems add softening agents to keep plumbing free of pipe-clogging mineral buildup. According to new research, these additives may amplify the risk of pathogen release into drinking water by weakening the grip that bacteria – like those responsible for Legionnaires’ disease – have on pipe interiors.  

  • High-power electronics keep their cool with new heat-conducting crystals

    The inner workings of high-power electronic devices must remain cool to operate reliably. High internal temperatures can make programs run slower, freeze or shut down. Researchers at the University of Illinois at Urbana-Champaign and The University of Texas, Dallas have collaborated to optimize the crystal-growing process of boron arsenide – a material that has excellent thermal properties and can effectively dissipate the heat generated in electronic devices.

  • Study reveals how polymers relax after stressful processing

    The polymers that make up synthetic materials need time to de-stress after processing, researchers said. A new study has found that entangled, long-chain polymers in solutions relax at two different rates, marking an advancement in fundamental polymer physics. The findings will provide a better understanding of the physical properties of polymeric materials and critical new insight to how individual polymer molecules respond to high-stress processing conditions.

  • Study yields a new scale of earthquake understanding

    Nanoscale knowledge of the relationships between water, friction and mineral chemistry could lead to a better understanding of earthquake dynamics, researchers said in a new study. Engineers at the University of Illinois at Urbana-Champaign used microscopic friction measurements to confirm that, under the right conditions, some rocks can dissolve and may cause faults to slip. 

  • DNA enzyme shuffles cell membranes a thousand times faster than its natural counterpart

    A new synthetic enzyme, crafted from DNA rather than protein, flips lipid molecules within the cell membrane, triggering a signal pathway that could be harnessed to induce cell death in cancer cells. It is the first such synthetic enzyme to outperform its natural counterparts.

  • What now with gerrymandering? Are algorithms part of the answer?

    The Supreme Court “punted” this week on the issue of partisan gerrymandering, but left the door open to future action. An Illinois professor hopes her research can be part of the solution.

  • New tissue-imaging technology could enable real-time diagnostics, map cancer progression

    A new microscope system can image living tissue in real time and in molecular detail, without any chemicals or dyes, report researchers at the University of Illinois.

  • New aircraft-scheduling models may ease air travel frustrations

    Flight schedules that allow for a little carefully designed wiggle room could prevent the frustration of cascading airport delays and cancellations. By focusing on the early phases of flight schedule planning and delays at various scales, researchers have developed models to help create schedules that are less susceptible to delays and easier to fix once disrupted.

  • Scott R. White, pioneer of self-healing materials, has died

    University of Illinois aerospace engineering professor Scott R. White, an innovator of self-healing and self-regulating materials, died Monday of cancer at age 55.

  • 3-D printed sugar scaffolds offer sweet solution for tissue engineering, device manufacturing

    University of Illinois engineers built a 3-D printer that offers a sweet solution to making detailed structures that commercial 3-D printers can’t: Rather than a layer-upon-layer solid shell, it produces a delicate network of thin ribbons of hardened isomalt, the type of sugar alcohol used to make throat lozenges.

    The water-soluble, biodegradable glassy sugar structures have multiple applications in biomedical engineering, cancer research and device manufacturing.

  • Engineers on a roll toward smaller, more efficient radio frequency transformers

    The future of electronic devices lies partly within the “internet of things” – the network of devices, vehicles and appliances embedded within electronics to enable connectivity and data exchange. University of Illinois engineers are helping realize this future by minimizing the size of one notoriously large element of integrated circuits used for wireless communication – the transformer.

  • Elastic microspheres expand understanding of embryonic development and cancer cells

    A new technique that uses tiny elastic balls filled with fluorescent nanoparticles aims to expand the understanding of the mechanical forces that exist between cells, researchers report. A University of Illinois-led team has demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens. This research may unlock some of the mysteries related to embryonic development and cancer stem cells, i.e., tumor-repopulating cells.

  • New polymer manufacturing process saves 10 orders of magnitude of energy

    Makers of cars, planes, buses – anything that needs strong, lightweight and heat resistant parts – are poised to benefit from a new manufacturing process that requires only a quick touch from a small heat source to send a cascading hardening wave through a polymer. Researchers at the University of Illinois have developed a new polymer-curing process that could reduce the cost, time and energy needed, compared with the current manufacturing process.

  • New CRISPR technology ‘knocks out’ yeast genes with single-point precision

    The CRISPR-Cas9 system has given researchers the power to precisely edit selected genes. Now, researchers have used it to develop a technology that can target any gene in the yeast Saccharomyces cerevisiae and turn it off by deleting single letters from its DNA sequence.

  • Prosthetic arms can provide controlled sensory feedback, study finds

    Losing an arm doesn’t have to mean losing all sense of touch, thanks to prosthetic arms that stimulate nerves with mild electrical feedback. University of Illinois researchers have developed a control algorithm that regulates the current so a prosthetics user feels steady sensation, even when the electrodes begin to peel off or when sweat builds up. 

  • Laser light show machine teaches students math, computer programming

    Laser light shows are no longer just the stage dressing for rock concerts. They’re also a fun way for local middle school students to learn the fundamentals of mathematics from educators and scientists at the University of Illinois.

  • Illinois architecture professor designs transformable, adaptive structures

    University of Illinois architecture professor Sudarshan Krishnan designs lightweight and transformable structures that can expand and collapse to adapt to a user’s needs.

  • New camera gives surgeons a butterfly’s-eye view of cancer

    Cancer lurking in tissue could be more easily found when looking through a butterfly’s eye.

  • Shrimp-inspired camera may enable underwater navigation

    The underwater environment may appear to the human eye as a dull-blue, featureless space. However, a vast landscape of polarization patterns appear when viewed through a camera that is designed to see the world through the eyes of many of the animals that inhabit the water. 

  • Researchers develop model to show how bacteria grow in plumbing systems

    Bacteria in tap water can multiply when a faucet isn’t used for a few days, such as when a house is vacant over a week’s vacation, a new study from University of Illinois engineers found. The study suggests a new method to show how microbial communities, including those responsible for illnesses like Legionnaires’ disease, may assemble inside the plumbing systems of homes and public buildings

  • Researchers demonstrate existence of new form of electronic matter

    Researchers have produced a “human scale” demonstration of a new phase of matter called quadrupole topological insulators that was recently predicted using theoretical physics. These are the first experimental findings to validate this theory.

  • Ag robot speeds data collection, analyses of crops as they grow

    A new lightweight, low-cost agricultural robot, developed by a team of scientists at the University of Illinois, could transform data collection and field scouting for agronomists, seed companies and farmers.

     

  • Three Illinois professors named Sloan Research Fellows

    Three Illinois scientists are among 126 recipients of the 2018 Sloan Research Fellowships from the Alfred P. Sloan Foundation. According to the foundation, the awards “honor early career scholars whose achievements mark them as among the very best scientific minds working today.” Winners receive a two-year $65,000 fellowship to further their research.

  • Tiny drug-delivering capsules could sustain transplanted insulin-producing cells for diabetics

    A drug-carrying microsphere within a cell-bearing microcapsule could be the key to transplanting insulin-secreting pig pancreas cells into human patients whose own cells have been destroyed by type I diabetes.

  • Shape-shifting organic crystals use memory to improve plastic electronics

    Researchers have identified a mechanism that triggers shape-memory phenomena in organic crystals used in plastic electronics. Shape-shifting structural materials are made with metal alloys, but the new generation of economical printable plastic electronics is poised to benefit from this phenomenon, too. Shape-memory materials science and plastic electronics technology, when merged, could open the door to advancements in low-power electronics, medical electronics devices and multifunctional shape-memory materials.

  • Researchers use sound waves to advance optical communication

    Illinois researchers have demonstrated that sound waves can be used to produce ultraminiature optical diodes that are tiny enough to fit onto a computer chip. These devices, called optical isolators, may help solve major data capacity and system size challenges for photonic integrated circuits, the light-based equivalent of electronic circuits, which are used for computing and communications.

  • Basar named College of Engineering interim dean

    Tamer Basar has been named the interim dean of the University of Illinois at Urbana-Champaign's College of Engineering effective Jan. 16, subject to approval of the University of Illinois Board of Trustees.

  • Drug-delivering nanoparticles seek and destroy elusive cancer stem cells

    Researchers are sending tiny drug-laden nanoparticles on a mission to seek and destroy cancer stem cells.

  • Carefully crafted light pulses control neuron activity

    Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

  • Shape-shifting agent targets harmful bacteria in the stomach

    A new shape-shifting polymer can target and kill Helicobacter pylori bacteria in the stomach without killing helpful bacteria in the gut.

  • Researchers put new spin on old technique to engineer better absorptive materials

    A team of University of Illinois bioengineers has taken a new look at an old tool to help characterize a class of materials called metal organic frameworks – MOFs for short. MOFs are used to detect, purify and store gases, and could help solve some of the worlds most challenging energy, environmental and pharmaceutical challenges – they can even pull water molecules straight from the air to provide relief from droughts.

  • Stem cells from muscle could address diabetes-related circulation problems

    Stem cells taken from muscle tissue could promote better blood flow in patients with diabetes who develop peripheral artery disease, a painful complication that can require surgery or lead to amputation.

  • Electrostatic force takes charge in bioinspired polymers

    Researchers at the University of Illinois and the University of Massachusetts, Amherst have taken the first steps toward gaining control over the self-assembly of synthetic materials in the same way that biology forms natural polymers. This advance could prove useful in designing new bioinspired, smart materials for applications ranging from drug delivery to sensing to remediation of environmental contaminants.

  • Researchers look to patterns to envision new engineering field

    The phenomenon that forms interference patterns on television displays when a camera focuses on a pattern like a person wearing stripes has inspired a new way to conceptualize electronic devices. Researchers at the University of Illinois are showing how the atomic-scale version of this phenomenon may hold the secrets to help advance electronics design to the limits of size and speed. 

  • Stemlike cells at tumor perimeter promote new blood vessels to feed tumor growth

    Stemlike cells at the edge of melanoma tumors secrete factors to promote blood-vessel growth, allowing the cancer to grow and spread.

  • Illinois scientist named Packard Fellow

    Pinshane Huang, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign, is among 18 early career researchers to receive 2017 Packard Fellowships from the David and Lucile Packard Foundation.

  • Mantis shrimp-inspired camera enables glimpse into hidden world

    By mimicking the eye of the mantis shrimp, Illinois researchers have developed an ultra-sensitive camera capable of sensing both color and polarization. The bioinspired imager can potentially improve early cancer detection and help provide a new understanding of underwater phenomena, the researchers said.

  • Researchers make headway in desalination technology

    Engineers at the University of Illinois have taken a step forward in developing a saltwater desalination process that is potentially cheaper than reverse osmosis and borrows from battery technology. In their study, the researchers are focusing on new materials that could make desalination of brackish waters economically desirable and energy efficient.

  • New methods tackle a perplexing engineering concept

    Researchers at the University of Illinois are working to turn a complex materials design problem into an intuitive concept, understandable to engineers from novice to advanced experience levels. The group developed guidelines to help understand materials engineered to become thicker when stretched. This highly useful property, which is not commonly found in nature, has applications for protective sports equipment, body armor and biomedical devices.

  • Tiny aquariums put nanoparticle self-assembly on display

    Seeing is believing when it comes to nanoparticle self-assembly. A team of University of Illinois engineers is observing the interactions of colloidal gold nanoparticles inside tiny aquariumlike sample containers to gain more control over the self-assembly process of engineered materials.

  • Large, crystalline lipid scaffolds bring new possibilities to protein, drug research

    Proteins and drugs are often attached to lipids to promote crystallization or ensure delivery to targeted tissues within the body, but only the smallest proteins and molecules fit within these fat structures. A new study reveals a lipid structure that can support much larger proteins and molecules than before, potentially increasing the variety of drugs that can be attached to these fat molecules.

  • Click beetles inspire design of self-righting robots

    Robots perform many tasks that humans can’t or don’t want to perform, getting around on intricately designed wheels and limbs. If they tip over, however, they are rendered almost useless. A team of University of Illinois mechanical engineers and entomologists are looking to click beetles, who can right themselves without the use of their legs, to solve this robotics challenge.

  • Changes in nonextreme precipitation may have not-so-subtle consequences

    Major floods and droughts receive a lot of attention in the context of climate change, but University of Illinois researchers analyzed over five decades of precipitation data from North America to find that changes in nonextreme precipitation are more significant than previously realized and larger than those in extreme precipitation. These changes can have a strong effect on ecosystems, agriculture, infrastructure design and resource management, and point to a need to examine precipitation in a more nuanced, multifaceted way.

  • Congressional redistricting less contentious when resolved using computer algorithm

    Concerns that the process of U.S. congressional redistricting may be politically biased have fueled many debates, but a team of University of Illinois computer scientists and engineers has developed a new computer algorithm that may make the task easier for state legislatures and fairer for their constituents.

  • Study: Biomarkers as predictive of sepsis as lengthy patient monitoring

    One measurement of key biomarkers in blood that characterize sepsis can give physicians as much information as hours of monitoring symptoms, a new study found.

  • Researchers develop dynamic templates critical to printable electronics technology

    When it comes to efficiency, sometimes it helps to look to Mother Nature for advice – even in technology as advanced as printable, flexible electronics.

    Researchers at the University of Illinois have developed bio-inspired dynamic templates used to manufacture organic semiconductor materials that produce printable electronics. It uses a process similar to biomineralization – the way that bones and teeth form. This technique is also eco-friendly compared with how conventional electronics are made, which gives the researchers the chance to return the favor to nature.