blog navigation

Engineering

blog posts

  • CHIME in Illinois puts students to work on COVID-related data science projects

    An international public health initiative connects students and public health agencies with data-information needs.

  • Human activity on rivers outpaces, compounds effects of climate change

    The livelihoods of millions of people living along the world’s biggest river systems are under threat by a range of stressors caused by the daily economic, societal and political activity of humans – in addition to the long-term effects of climate change, researchers report.

  • Researchers mimic nature for fast, colorful 3D printing

    Brilliantly colored chameleons, butterflies, opals – and now some 3D-printed materials – reflect color by using nanoscale structures called photonic crystals. A new study that demonstrates how a modified 3D-printing process provides a versatile approach to producing multiple colors from a single ink is published in the journal Science Advances.

  • Do COVID-19 apps protect your privacy?

    Many mobile apps that track the spread of COVID-19 ask for personal data but don’t indicate the information will be secure.

  • Making a homemade COVID mask? Study explains best fabric choices

    Health authorities believe COVID-19 spreads by the transmission of respiratory droplets, and the Centers for Disease Control and Prevention recommends homemade cloth face coverings for use in public spaces. Starting today, Illinois joins many other states in requiring people to wear masks while out. However, initial uncertainty regarding the masks’ effectiveness in reducing exhaled droplets leaves some people unsure or skeptical of their usefulness during the current COVID-19 pandemic. Mechanical science and engineering professor Taher Saif spoke with News Bureau physical sciences editor Lois Yoksoulian about a study that he and his graduate students, Onur Aydin and Bashar Emon, performed on the effectiveness of common household fabrics for use in homemade masks.

  • Nanostimulators boost stem cells for muscle repair

    In regenerative medicine, an ideal treatment for patients whose muscles are damaged from lack of oxygen would be to invigorate them with an injection of their own stem cells.

    In a new study published in the journal ACS Nano, researchers at the University of Illinois at Urbana-Champaign demonstrated that “nanostimulators” – nanoparticles seeded with a molecule the body naturally produces to prompt stem cells to heal wounds – can amp up stem cells’ regenerative powers in a targeted limb in mice.

  • Spinal cord gives bio-bots walking rhythm

    Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

  • Inexpensive, portable detector identifies pathogens in minutes

    Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs. Now, researchers have demonstrated an inexpensive yet sensitive smartphone-based testing device for viral and bacterial pathogens that takes about 30 minutes to complete. The roughly $50 smartphone accessory could reduce the pressure on testing laboratories during a pandemic such as COVID-19.

  • New study shows how oxygen transfer is altered in diseased lung tissue

    A multidisciplinary team of researchers at the University of Illinois at Urbana-Champaign has developed tiny sensors that measure oxygen transport in bovine lung tissue. The study – which establishes a new framework for observing the elusive connection between lung membranes, oxygen flow and related disease – is published in the journal Nature Communications.

  • Crumpled graphene makes ultra-sensitive cancer DNA detector

    Graphene-based biosensors could usher in an era of liquid biopsy, detecting DNA cancer markers circulating in a patient’s blood or serum. But current designs need a lot of DNA. In a new study, crumpling graphene makes it more than ten thousand times more sensitive to DNA by creating electrical “hot spots,” researchers at the University of Illinois at Urbana-Champaign found.

  • Study maps landmarks of peripheral artery disease to guide treatment development

    Novel biomedical advances that show promise in the lab often fall short in clinical trials. For researchers studying peripheral artery disease, this is made more difficult by a lack of standardized metrics for what recovery looks like. A new study from University of Illinois at Urbana-Champaign researchers identifies major landmarks of PAD recovery, creating signposts for researchers seeking to understand the disease and develop treatments.

  • Breaking the temperature barrier in small-scale materials testing

    Researchers have demonstrated a new method for testing microscopic aeronautical materials at ultra-high temperatures. By combining electron microscopy and laser heating, scientists can evaluate these materials much more quickly and inexpensively than with traditional testing.

  • New CRISPR base-editing technology slows ALS progression in mice

    A new CRISPR gene-editing method can inactivate one of the genes responsible for an inherited form of ALS, scientists at the University of Illinois at Urbana-Champaign report in a new study. The novel treatment slowed disease progression, improved muscle function and extended lifespan in mice with an aggressive form of ALS.

  • Sottos elected to National Academy of Engineering

    Nancy Sottos, an engineering professor at the University of Illinois at Urbana-Champaign, has been elected to the National Academy of Engineering. She is one of 87 new members and 18 international members announced by the Academy on Feb. 6.

  • Hybrid microscope could bring digital biopsy to the clinic

    By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era.

  • Researchers expand microchip capability with new 3D inductor technology

    Smaller is better when it comes to microchips, researchers said, and by using 3D components on a standardized 2D microchip manufacturing platform, developers can use up to 100 times less chip space. A team of engineers has boosted the performance of its previously developed 3D inductor technology by adding as much as three orders of magnitudes more induction to meet the performance demands of modern electronic devices.

  • New understanding of condensation could lead to better power plant condenser, de-icing materials

    For decades, it’s been understood that water repellency is needed for surfaces to shed condensation buildup – like the droplets of water that form in power plant condensers to reduce pressure. New research shows that the necessity of water repellency is unclear and that the slipperiness between the droplets and solid surface appears to be more critical to the clearing of condensation. This development has implications for the costs associated with power generation and technologies like de-icing surfaces for power lines and aircraft.

  • Advanced polymers help streamline water purification, environmental remediation

    It takes a lot of energy to collect, clean and dispose of contaminated water. Some contaminants, like arsenic, occur in low concentrations, calling for even more energy-intensive selective removal processes.

  • Researchers gain control over internal structure of self-assembled composite materials

    Composites made from self-assembling inorganic materials are valued for their unique strength and thermal, optical and magnetic properties. However, because self-assembly can be difficult to control, the structures formed can be highly disordered, leading to defects during large-scale production. Researchers at the University of Illinois and the University of Michigan have developed a templating technique that instills greater order and gives rise to new 3D structures in a special class of materials, called eutectics, to form new, high-performance materials.

  • For CRISPR, tweaking DNA fragments before inserting yields highest efficiency rates yet

    University of Illinois researchers achieved the highest reported rates of inserting genes into human cells with the CRISPR-Cas9 gene-editing system, a necessary step for harnessing CRISPR for clinical gene-therapy applications.

    By chemically tweaking the ends of the DNA to be inserted, the new technique is up to five times more efficient than current approaches. The researchers saw improvements at various genetic locations tested in a human kidney cell line, even seeing 65% insertion at one site where the previous high had been 15%.

  • Scientists develop gentle, microscopic hands to study tiny, soft materials

    Handling very soft, delicate items without damaging them is hard enough with human hands, let alone doing it at the microscopic scale with laboratory instruments. Three new studies show how scientists have honed a technique for handling tiny, soft particles using precisely controlled fluid flows that act as gentle microscopic hands. The technique allows researchers to test the physical limits of these soft particles and the things made from them – ranging from biological tissues to fabric softeners.

  • New polymer material may help batteries become self-healing, recyclable

    Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery’s liquid electrolytes, leading to explosions and fires. Engineers at the University of Illinois have developed a solid polymer-based electrolyte that can self-heal after damage – and the material can also be recycled without the use of harsh chemicals or high temperatures.

  • Single-molecule detection of cancer markers brings liquid biopsy closer to clinic

    A fast, inexpensive yet sensitive technique to detect cancer markers is bringing researchers closer to a “liquid biopsy” – a test using a small sample of blood or serum to detect cancer, rather than the invasive tissue sampling routinely used for diagnosis.

    Researchers at the University of Illinois developed a method to capture and count cancer-associated microRNAs, or tiny bits of messenger molecules that are exuded from cells and can be detected in blood or serum, with single-molecule resolution.

  • New heat model may help electronic devices last longer

    A University of Illinois-based team of engineers has found that the model currently used to predict heat loss in a common semiconductor material does not apply in all situations. By testing the thermal properties of gallium nitride semiconductors fabricated using four popular methods, the team discovered that some techniques produce materials that perform better than others. This new understanding can help chip manufacturers find ways to better diffuse the heat that leads to device damage and decreased device lifespans.

  • Eight Illinois faculty members elected AAAS Fellows

    CHAMPAIGN, Ill. — Eight professors at the University of Illinois at Urbana-Champaign have been elected 2019 Fellows of the American Association for the Advancement of Science.

  • Graphene: The more you bend it, the softer it gets

    New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene – a question that has eluded scientists since graphene was first isolated. The findings are reported in the journal Nature Materials.

  • Artificial intelligence to run the chemical factories of the future

    A new proof-of-concept study details how an automated system driven by artificial intelligence can design, build, test and learn complex biochemical pathways to efficiently produce lycopene, a red pigment found in tomatoes and commonly used as a food coloring, opening the door to a wide range of biosynthetic applications, researchers report.  

  • BTN premieres documentary on pioneering educator

    “William L. Everitt: An Optimist’s Journey” premieres Nov. 11 at 9:30 p.m. CST/10:30 p.m. EST on the Big Ten Network. The new 30-minute documentary tells the story of the inventor, author, visionary and former dean of what is now The Grainger College of Engineering.

     

  • Human reflexes keep two-legged robot upright

    Imagine being trapped inside a collapsed building after a disaster, wondering if anybody will be brave enough to rescue you. Suddenly, a door bursts open, and standing in the shadows is a robot. But this is not just any robot; this one has quick, humanlike reflexes and is guided by a person from a remote location who feels the same physical forces the robot is experiencing.

  • Crystallization clarified, researchers report

    Researchers from the University of Illinois at Urbana-Champaign and Northwestern University have made it possible to observe and simulate the self-assembly of crystalline materials at a much higher resolution than before.

  • Researchers build microscopic biohybrid robots propelled by muscles, nerves

    Researchers have developed soft robotic devices driven by neuromuscular tissue that triggers when stimulated by light – bringing mechanical engineering one step closer to developing autonomous biobots.

  • Researchers develop technique to de-ice surfaces in seconds

    Airplane wings, wind turbines and indoor heating systems all struggle under the weight and chill of ice. Defrosting and de-icing techniques are energy-intensive, however, and often require large masses of ice to melt completely in order to work. Researchers from the University of Illinois and Kyushu University in Japan have developed a new technique that requires only a thin layer of ice at the interface of a surface to melt, allowing it to slide off under the force of gravity.

  • Tiny thermometer measures how mitochondria heat up the cell by unleashing proton energy

    Armed with a tiny new thermometer probe that can quickly measure temperature inside of a cell, University of Illinois researchers have illuminated a mysterious aspect of metabolism: heat generation.

  • Researchers turn off backscattering, aim to improve optical data transmission

    Engineers at the University of Illinois have found a way to redirect misfit light waves to reduce energy loss during optical data transmission. In a study, researchers exploited an interaction between light and sound waves to suppress the scattering of light from material defects – which could lead to improved fiber optic communication. Their findings are published in the journal Optica.

  • Printing flattens polymers, improving electrical and optical properties

    Researchers have found a way to use polymer printing to stretch and flatten twisted molecules so that they conduct electricity better. A team led by chemical and biomolecular engineers from the University of Illinois report their findings in the journal Science Advances.

  • Researchers embrace imperfection to improve biomolecule transport

    While watching the production of porous membranes used for DNA sorting and sequencing, University of Illinois researchers wondered how tiny steplike defects formed during fabrication could be used to improve molecule transport. They found that the defects – formed by overlapping layers of membrane – make a big difference in how molecules move along a membrane surface. Instead of trying to fix these flaws, the team set out to use them to help direct molecules into the membrane pores.

  • Artificial intelligence could help air travelers save a bundle

    Researchers are using artificial intelligence to help airlines price ancillary services such as checked bags and seat reservations in a way that is beneficial to customers’ budget and privacy, as well as to the airline industry’s bottom line.

  • Search for new semiconductors heats up with gallium oxide

    University of Illinois electrical engineers have cleared another hurdle in high-power semiconductor fabrication by adding the field’s hottest material – beta-gallium oxide – to their arsenal. Beta-gallium oxide is readily available and promises to convert power faster and more efficiently than today’s leading semiconductor materials – gallium nitride and silicon, the researchers said.

  • Human waste an asset to economy, environment, study finds

    Human waste might be an unpleasant public health burden, but scientists at the University of Illinois see sanitation as a valuable facet of global ecosystems and an overlooked source of nutrients, organic material and water.

  • Researchers unveil how soft materials react to deformation at molecular level

    Before designing the next generation of soft materials, researchers must first understand how they behave during rapidly changing deformation. In a new study, researchers challenged previous assumptions regarding polymer behavior with newly developed laboratory techniques that measure polymer flow at the molecular level.

  • Polymers jump through hoops on pathway to sustainable materials

    Recyclable plastics that contain ring-shaped polymers may be a key to developing sustainable synthetic materials. Despite some promising advances, researchers said, a full understanding of how to processes ring polymers into practical materials remains elusive. In a new study, researchers identified a mechanism called “threading” that takes place when a polymer is stretched – a behavior not witnessed before. This new insight may lead to new processing methods for sustainable polymer materials.

  • Multistep self-assembly opens door to new reconfigurable materials

    CHAMPAIGN, Ill. — Self-assembling synthetic materials come together when tiny, uniform building blocks interact and form a structure. However, nature lets materials like proteins of varying size and shape assemble, allowing for complex architectures that can handle multiple tasks.

     

  • Study: Reducing energy required to convert CO2 waste into valuable resources

    CHAMPAIGN, Ill. — Surplus industrial carbon dioxide creates an opportunity to convert waste into a valuable commodity. Excess CO2 can be a feedstock for chemicals typically derived from fossil fuels, but the process is energy-intensive and expensive. University of Illinois chemical engineers have assessed the technical and economic feasibility of a new electrolysis technology that uses a cheap biofuel byproduct to reduce the energy consumption of the waste-to-value process by 53 percent.

  • Smart antioxidant-containing polymer responds to body chemistry, environment

    Oxidants found within living organisms are byproducts of metabolism and are essential to wound-healing and immunity. However, when their concentrations become too high, inflammation and tissue damage can occur. University of Illinois engineers have developed and tested a new drug-delivery system that senses high oxidant levels and responds by administering just the right amount of antioxidant to restore this delicate balance.

  • Is there a cure for potholes?

    Temperatures may be on the rise, but many motorists and pedestrians remain focused on the ground as they attempt to navigate safely around the many potholes that develop this time of year. Industrial and enterprise systems engineering professor Henrique M. Reis spoke with Illinois News Bureau physical sciences editor Lois Yoksoulian about how potholes form and if there are any potential solutions.

  • New model predicts how ground shipping will affect future human health, environment

    The trucks and trains that transport goods across the United States emit gases and particles that threaten human health and the environment. A University of Illinois-led project developed a new model that predicts through 2050 the impact of different environmental policies on human mortality rates and short- and long-term climate change caused by particulate and greenhouse gas emissions.

  • Feeling groovy: Neurons integrate better with muscle grown on grooved platforms

    Growing muscle tissue on grooved platforms helps neurons more effectively integrate with the muscle, a requirement for engineering muscle in the lab that responds and functions like muscle in the body, University of Illinois researchers found in a new study.

  • Researchers gain control over soft-molecule synthesis

    By gaining control over shape, size and composition during synthetic molecule assembly, researchers can begin to probe how these factors influence the function of soft materials. Finding these answers could help advance virology, drug delivery development and the creation of new materials. 

  • Researchers diversify drug development options with new metal catalyst

    A University of Illinois team of researchers led by chemistry professor M. Christina White has developed a new manganese-based catalyst that can change the structure of druglike molecules to make new drugs, advancing the pace and efficiency of drug development. 

  • Unmuting large silent genes lets bacteria produce new molecules, potential drug candidates

    By enticing away the repressors dampening unexpressed, silent genes in Streptomyces bacteria, researchers at the University of Illinois have unlocked several large gene clusters for new natural products, according to a study published in the journal Nature Chemical Biology.