News Bureau

Research News Campus News About

blog navigation

News Bureau - Research

 

  • Researchers have demonstrated a new fabrication technique that allows them replicate the nanostructures found on cicada wings that make them water- and microbe-repellent.

    Cicada-inspired waterproof surfaces closer to reality, researchers report

    A multidisciplinary group that studies the physical and chemical properties of insect wings has demonstrated the ability to reproduce the nanostructures that help cicada wings repel water and prevent bacteria from establishing on the surface. The new technique – which uses commercial nail polish – is economical and straightforward, and the researchers said it will help fabricate future high-tech waterproof materials.

  • Graphic of click beetle and coiled actuators

    Click beetle-inspired robots jump using elastic energy

    Researchers have made a significant leap forward in developing insect-sized jumping robots capable of performing tasks in the small spaces often found in mechanical, agricultural and search-and-rescue settings. A new study led by mechanical science and engineering professor Sameh Tawfick demonstrates a series of click beetle-sized robots small enough to fit into tight spaces, powerful enough to maneuver over obstacles and fast enough to match an insect’s rapid escape time.

  • Click beetles can jump without the aid of their limbs when they are tipped onto their backsides. A team of University of Illinois researchers are examining this mechanism to engineer self-righting robots.

    Click beetles inspire design of self-righting robots

    Robots perform many tasks that humans can’t or don’t want to perform, getting around on intricately designed wheels and limbs. If they tip over, however, they are rendered almost useless. A team of University of Illinois mechanical engineers and entomologists are looking to click beetles, who can right themselves without the use of their legs, to solve this robotics challenge.

  • Three engineering students seated around a table work on a team project in the classroom.

    Collaborative learning experiences crucial in preparing engineering students for the workforce

    An innovative pair of faculty members in education and engineering at the University of Illinois Urbana-Champaign are partnering to provide experiential learning projects that cultivate the collaborative skills engineering students need for educational and career success.

  • Researchers developed a rapid sensing gel to measure a molecular marker of eye injury in a teardrop. From left: Carle opthamologist Dr. Laura Labriola, Illinois visiting scholar Ketan Dighe and professor Dipanjan Pan.

    Color-changing sensor detects signs of eye damage in tears

    A new point-of-care rapid-sensing device can detect a key marker of eye injury in minutes – a time frame crucial to treating eye trauma.  

    University of Illinois researchers developed a gel laden with gold nanoparticles that changes color when it reacts with a teardrop containing ascorbic acid, released from a wound to the eye. In a new study published in the journal Biosensors and Bioelectronics, the researchers used the sensor, called OjoGel, to measure ascorbic acid levels in artificial tears and in clinical samples of fluid from patients’ eyes. 

  • Committee to identify, recruit founding dean for Carle Illinois College of Medicine

    A search committee established to find the Carle Illinois College of Medicine’s inaugural dean will begin its work this month with the goal of naming the dean by spring 2016

  • Educational psychologist Daniel Morrow is leading a project aimed at helping people with low health literacy better understand their health data.

    Computer-generated doctor explains test results to patients

    A computer-generated physician, now under development at the University of Illinois' Beckman Institute, explains diabetes and cholesterol test results to would-be patients in videos designed for viewing on electronic medical record portals.

  • University of Illinois engineers developed a method to computationally correct aberrations in three-dimensional tissue microscopy. From left, postdoctoral researcher Steven Adie, professor P. Scott Carney, graduate students Adeel Ahmad and Benedikt Graf, and professor Stephen Boppart.

    Computing the best high-resolution 3-D tissue images

    CHAMPAIGN, Ill. - Real-time, 3-D microscopic tissue imaging could be a revolution for medical fields such as cancer diagnosis, minimally invasive surgery and ophthalmology. University of Illinois researchers have developed a technique to computationally correct for aberrations in optical tomography, bringing the future of medical imaging into focus.

  • Researchers Sheldon H. Jacobson, right, and Douglas M. King developed a new computer algorithm that may offer state legislators a new solution to the contentious task of congressional redistricting.

    Congressional redistricting less contentious when resolved using computer algorithm

    Concerns that the process of U.S. congressional redistricting may be politically biased have fueled many debates, but a team of University of Illinois computer scientists and engineers has developed a new computer algorithm that may make the task easier for state legislatures and fairer for their constituents.

  • Contest to give student teams chance to launch a business

    CHAMPAIGN, Ill. -- A contest at the University of Illinois that gets under way Aug. 30 will give student teams the opportunity to compete for $20,000 in prizes by drafting a plan for developing a technological idea into a viable commercial venture.

  • A team of materials science researchers, including professor Paul Braun, studied how heat flows across an interface at an atomic level.

    Controlling heat flow with atomic-level precision

    CHAMPAIGN, Ill. - Through a combination of atomic-scale materials design and ultrafast measurements, researchers at the University of Illinois have revealed new insights about how heat flows across an interface between two materials.

  • Illinois engineers Kwiyong Kim, left, Xiao Su, Johannes Elbert and Paola Baldaguez Medina are part of a team that developed a new polymer electrode device that can capture and destroy PFAS contaminants present in water.

    Copolymer helps remove pervasive PFAS toxins from environment

    Researchers have demonstrated that they can attract, capture and destroy PFAS – a group of federally regulated substances found in everything from nonstick coatings to shampoo and nicknamed “the forever chemicals” due to their persistence in the natural environment.

  • Core curriculum committee formed for Carle Illinois College of Medicine

    Dr. Robert Good and professor Rashid Bashir have been named co-chairs of the 18-member group that will lead the effort to build the engineering-based Carle Illinois College of Medicine’s core curriculum. 

  • Kumar_Richardson

    Corn better used as food than biofuel, study finds

    Corn is grown not only for food, it is also an important renewable energy source. Renewable biofuels can come with hidden economic and environmental issues, and the question of whether corn is better utilized as food or as a biofuel has persisted since ethanol came into use. For the first time, researchers at the University of Illinois have quantified and compared these issues in terms of economics of the entire production system to determine if the benefits of biofuel corn outweigh the costs.

  • Crackling noise in cereal and magnets aids study of earthquakes

    When Karin Dahmen hears the crackling noise in a bowl of crisped-rice cereal, her thoughts turn to earthquakes.

  • University of Illinois researchers developed a cradle and app for the iPhone to make a handheld biosensor that uses the phone's own camera and processing power to detect any kind of biological molecules or cells.

    Cradle turns smartphone into handheld biosensor

    CHAMPAIGN, Ill. - Researchers and physicians in the field could soon run on-the-spot tests for environmental toxins, medical diagnostics, food safety and more with their smartphones.

  • A microscope image of cells

    CRISPR-Cas13 targets proteins causing ALS, Huntington's disease in the mouse nervous system

    A new study by University of Illinois Urbana-Champaign researchers used a targeted CRISPR technique in the central nervous systems of mice to turn off production of mutant proteins that can cause ALS and Huntington’s disease. Rather than the popular DNA-editing CRISPR-Cas9 technique, the new approach uses CRISPR-Cas13, which can target mRNA – the messenger molecule that carries protein blueprints transcribed from DNA. The Illinois team developed Cas13 systems that could target and cut RNAs that code for the proteins that trigger ALS and Huntington’s disease, effectively silencing the genes without disturbing the cell’s DNA.

  • Illinois researchers used CRISPR technology to activate silent gene clusters in Streptomyces bacteria, a potential treasure trove of new classes of drugs. Pictured, clockwise from back middle: graduate student Behnam Enghiad, postdoctoral researcher Shangwen Luo, graduate student Tajie Luo and professor Huimin Zhao.

    CRISPR mines bacterial genome for hidden pharmaceutical treasure

    In the fight against disease, many weapons in the medicinal arsenal have been plundered from bacteria themselves. Using CRISPR-Cas9 gene-editing technology, researchers have now uncovered even more potential treasure hidden in silent genes.

  • In this computer simulation, DNA in a serum sample interacts with a crumpled graphene surface.

    Crumpled graphene makes ultra-sensitive cancer DNA detector

    Graphene-based biosensors could usher in an era of liquid biopsy, detecting DNA cancer markers circulating in a patient’s blood or serum. But current designs need a lot of DNA. In a new study, crumpling graphene makes it more than ten thousand times more sensitive to DNA by creating electrical “hot spots,” researchers at the University of Illinois at Urbana-Champaign found.

  • Professor Qian Chen, seated, and graduate students Binbin Luo, left, and Zihao Ou collaborated with researchers at Northwestern University to observe and simulate the formation of crystalline materials at a much higher resolution than before.

    Crystallization clarified, researchers report

    Researchers from the University of Illinois at Urbana-Champaign and Northwestern University have made it possible to observe and simulate the self-assembly of crystalline materials at a much higher resolution than before.

  • Researchers seated at table with instrument used to perform their new metal fatigue testing methodoloy

    Deformation fingerprints will help researchers identify, design better metallic materials

    Engineers can now capture and predict the strength of metallic materials subjected to cycling loading, or fatigue strength, in a matter of hours – not the months or years it takes using current methods.

  • Details on the 4/18 Midwest earthquake

    A Minute With™... Amr S. Elnashai, the director of the Mid-America Earthquake Center

  • University of Illinois engineering researcher Ann-Perry Witmer has developed a new computer algorithm that helps engineers who work internationally incorporate the influences of local values into their infrastructure designs.

    Diagnostic tool helps engineers to design better global infrastructure solutions

    Designing safe bridges and water systems for low-income communities is not always easy for engineers coming from highly industrialized places. A new discipline called contextual engineering helps engineers think beyond personal values, expectations and definitions of project success when tackling global infrastructure problems.

  • A display screens that use flexible fins and liquid droplets that can be arranged in various orientations to create images like this simulation of the opening of a flower bloom.

    Displays controlled by flexible fins and liquid droplets more versatile, efficient than LED screens

    Flexible displays that can change color, convey information and even send veiled messages via infrared radiation are now possible, thanks to new research from the University of Illinois Urbana-Champaign. Engineers inspired by the morphing skins of animals like chameleons and octopuses have developed capillary-controlled robotic flapping fins to create switchable optical and infrared light multipixel displays that are 1,000 times more energy efficient than light-emitting devices.

  • Masks are an important tool for fighting COVID-19 but wearing one can make it difficult for others to hear us speak. Using a unique laboratory setup, Illinois researcher Ryan Corey tested how different types of masks affect the acoustics of speech.

    Disposable surgical masks best for being heard clearly when speaking, study finds

    Researcher Ryan Corey recently heard from a friend who teaches at a school where some of the students have hearing loss. The friend wanted to know if he had any ideas to help her communicate with these students while wearing a mask to slow the spread of COVID-19. Corey, who also has hearing loss, did not know what to tell her. So, he headed to the Illinois Augmented Listening Laboratory to look for solutions.

  • Sheldon H. Jacobson

    Ditch the gadgets while driving in Memorial Day weekend traffic

    A Minute With™... computer science professor Sheldon H. Jacobson

  • A synthetic DNA enzyme inserts into a cell membrane, causing lipids to shuffle between the inner and outer membrane layers.

    DNA enzyme shuffles cell membranes a thousand times faster than its natural counterpart

    A new synthetic enzyme, crafted from DNA rather than protein, flips lipid molecules within the cell membrane, triggering a signal pathway that could be harnessed to induce cell death in cancer cells. It is the first such synthetic enzyme to outperform its natural counterparts.

  • Artists rendering of cornaviruses. A virus in the foreground is wrapped in a DNA net that is giving off a glowing signal.

    DNA nets capture COVID-19 virus in low-cost rapid-testing platform

    Tiny nets woven from DNA strands can ensnare the spike protein of the virus that causes COVID-19, lighting up the virus for a fast-yet-sensitive diagnostic test – and also impeding the virus from infecting cells, opening a new possible route to antiviral treatment, according to a new study led by the University of Illinois Urbana-Champaign.

  • An artist's rendering of viruses passing through a nanopore sensor

    DNA sensor quickly determines whether viruses are infectious

    A new sensor can detect not only whether a virus is present, but whether it’s infectious – an important distinction for containing viral spread. Researchers demonstrated the sensor, which integrates specially designed DNA fragments and nanopore sensing, with two key viruses that cause infections worldwide: the human adenovirus and the virus that causes COVID-19.  

  • Masooda Bashir

    Do COVID-19 apps protect your privacy?

    Many mobile apps that track the spread of COVID-19 ask for personal data but don’t indicate the information will be secure.

  • Does the Hawaiian quake make volcanic eruptions more likely?

    A Minute With™... Amr Elnashai, a Fellow of the Royal Academy of Engineering in the United Kingdom

  • Professor Richard Sowers, left, and recent graduate Daniel Carmody have developed a new computer algorithm that will help urban planners understand and measure traffic congestion and suggest alternative routes.

    Driver behavior influences traffic patterns as much as roadway design, study reports

    Urban planners may soon have a new way to measure traffic congestion. By capturing the different routes by which vehicles can travel between locations, researchers have developed a new computer algorithm that helps quantify regions of congestion in urban areas and suggests ways around them

  • Illinois researchers developed nanoparticles that can target cancer stem cells (yellow), the rare cells within a tumor (blue) that can cause cancer to recur or spread.

    Drug-delivering nanoparticles seek and destroy elusive cancer stem cells

    Researchers are sending tiny drug-laden nanoparticles on a mission to seek and destroy cancer stem cells.

  • A laser stylus writes on a small array of multifunction pixels made by dual-function LEDs than can both emit and respond to light.

    Dual-function nanorod LEDs could make multifunctional displays

    Cellphones and other devices could soon be controlled with touchless gestures and charge themselves using ambient light, thanks to new LED arrays that can both emit and detect light.

  • Mechanical science and engineering professor Andrew Alleyne is one of eight recipients from the University of Illinois at Urbana-Champaign to be elected as AAAS Fellows this year.

    Eight Illinois faculty members elected AAAS Fellows

    CHAMPAIGN, Ill. — Eight professors at the University of Illinois at Urbana-Champaign have been elected 2019 Fellows of the American Association for the Advancement of Science.

  • Plant biology professor Lisa Ainsworth is one of eight Illinois faculty members on the Clarivate Analytics / Thomson Reuters Highly Cited Researchers list, 2016.

    Eight Illinois researchers rank among world’s most influential

    Eight University of Illinois researchers have been named to the Thomson Reuters / Clarivate Analytics Highly Cited Researchers list for 2016. The list identifies scientists “whose research has had significant global impact within their respective fields of study."

  • Illinois mechanical sciences and engineering professor Ning Wang, left, graduate students Erfan Mohagheghian and Gaurav Chaudhary, and postdoctoral researchers Junwei Chen and Jian Sun are measuring mechanical forces within cells to help unlock some of the mysteries of embryonic development and cancer.

    Elastic microspheres expand understanding of embryonic development and cancer cells

    A new technique that uses tiny elastic balls filled with fluorescent nanoparticles aims to expand the understanding of the mechanical forces that exist between cells, researchers report. A University of Illinois-led team has demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens. This research may unlock some of the mysteries related to embryonic development and cancer stem cells, i.e., tumor-repopulating cells.

  • An N95 mask in a multicooker with a towel.

    Electric cooker an easy, efficient way to sanitize N95 masks, study finds

    Owners of electric multicookers may be able to add another use to its list of functions, a new study suggests: sanitization of N95 respirator masks.

    The University of Illinois, Urbana-Champaign study found that 50 minutes of dry heat in an electric cooker, such as a rice cooker or Instant Pot, decontaminated N95 respirators inside and out while maintaining their filtration and fit. This could enable wearers to safely reuse limited supplies of the respirators, originally intended to be one-time-use items. 

  • A researcher is holding a vial of gold that has been extracted from disgarded electronics in the background

    Electrochemistry helps clean up electronic waste recycling, precious metal mining

    A new method safely extracts valuable metals locked up in discarded electronics and low-grade ore using dramatically less energy and fewer chemical materials than current methods, report University of Illinois Urbana-Champaign researchers in the journal Nature Chemical Engineering

  • Electron microscope image of an array of new chip components that integrate the inductors, blue, and capacitors, yellow, needed to make the electronic signal filters in phones and other wireless devices.

    Electronic components join forces to take up 10 times less space on computer chips

    Electronic filters are part of the inner workings of our phones and other wireless devices. They eliminate or enhance specific input signals to achieve the desired output signals. They are essential, but take up space on the chips that researchers are on a constant quest to make smaller. A new study demonstrates the successful integration of the individual elements that make up electronic filters onto a single component, significantly reducing the amount of space taken up by the device.

  • Electrical and computer engineering professor Joseph Lyding and graduate student Jae Won Do led a research team to develop a new method of soldering gaps between carbon nanotubes, a new type of transistor.

    Electronic device performance enhanced with new transistor encasing method

    CHAMPAIGN, Ill. - A more effective method for closing gaps in atomically small wires has been developed by University of Illinois researchers, further opening the doors to a new transistor technology.

  • Philip Phillips, a professor of physics and of chemistry at Illinois, and colleagues have found that something other than electrons carries the current in copper-containing superconductors known as cuprates.

    Electrons are not enough: Cuprate superconductors defy convention

    CHAMPAIGN, Ill. - To engineers, it's a tale as old as time: Electrical current is carried through materials by flowing electrons. But physicists at the University of Illinois and the University of Pennsylvania found that for copper-containing superconductors, known as cuprates, electrons are not enough to carry the current.

  • Illinois professor Paul Braun and Hailong Ning, the director of research and development at Xerion Advanced Battery Corporation, led a research team that developed a method for directly electroplating lithium-ion battery cathodes.

    Electroplating delivers high-energy, high-power batteries

    The process that makes gold-plated jewelry or chrome car accents is now making powerful lithium-ion batteries.

  • Inspired by the principles of natural polymer synthesis, Illinois chemical and biomolecular engineering professor Charles Sing, left, and graduate students Jason Madinya and Tyler Lytle co-authored a study that found they could create new synthetic materials by tuning the electrostatic charge of polymer chains.

    Electrostatic force takes charge in bioinspired polymers

    Researchers at the University of Illinois and the University of Massachusetts, Amherst have taken the first steps toward gaining control over the self-assembly of synthetic materials in the same way that biology forms natural polymers. This advance could prove useful in designing new bioinspired, smart materials for applications ranging from drug delivery to sensing to remediation of environmental contaminants.

  • Chemistry professor Prashant Jain is one of eleven Illinois faculty members on the Clarivate Analytics Highly Cited Researchers list, 2018.

    Eleven Illinois researchers rank among world’s most influential

    Eleven faculty members at the University of Illinois at Urbana-Champaign have been named to the 2018 Clarivate Analytics Highly Cited Researchers list.

  • Portrait of Nancy Sotttos

    Engineering professor Nancy Sottos elected to National Academy of Sciences

    University of Illinois Urbana-Champaign materials science and engineering professor Nancy Sottos has been elected to the National Academy of Sciences, one of the highest professional honors a scientist can receive. She is among 120 members and 30 international members elected this year to recognize their distinguished and continuing achievements in original research.

  • Graduate student Reshmina William, left, and civil and environmental engineering professor Ashlynn Stillwell pause on the green roof over the Business Instructional Facility at the University of Illinois. Their research is helping to simultaneously evaluate the performance of green roofs and communicate their findings with urban planners, policymakers and the general public.

    Engineers find way to evaluate green roofs

    Green infrastructure is an attractive concept, but there is concern surrounding its effectiveness. Researchers at the University of Illinois at Urbana-Champaign are using a mathematical technique traditionally used in earthquake engineering to determine how well green infrastructure works and to communicate with urban planners, policymakers and developers.

  • A photomicrograph of three 50-micron diameter rolled transformers developed by Illinois professor Xiuling Li’s team.

    Engineers on a roll toward smaller, more efficient radio frequency transformers

    The future of electronic devices lies partly within the “internet of things” – the network of devices, vehicles and appliances embedded within electronics to enable connectivity and data exchange. University of Illinois engineers are helping realize this future by minimizing the size of one notoriously large element of integrated circuits used for wireless communication – the transformer.

  • Illinois researchers developed a new design paradigm for inductors. Processed while flat, the inductors then roll up on their own, taking up much less space on a chip.

    Engineers roll up their sleeves - and then do same with inductors

    CHAMPAIGN, Ill. - On the road to smaller, high-performance electronics, University of Illinois researchers have smoothed one speed bump by shrinking a key, yet notoriously large element of integrated circuits.

  • Aerial image of the Oso landslide on April 13, 2014.

    Engineers shine light on deadly landslide

    A new report by University of Illinois civil and environmental engineering professor Tim Stark and colleagues details the factors that led to the deadliest landslide on record in the continental United States, along with steps that can be taken to mitigate landslide consequences and risk in the Pacific Northwest.