Strategic Communications and Marketing News Bureau

Yeast byproduct inhibits white-nose syndrome fungus in lab experiments

CHAMPAIGN, Ill. — A microbe found in caves produces a compound that inhibitsPseudogymnoascus destructans, the fungus that causes white-nose syndrome in bats, researchers report in the journal Mycopathologia. The finding could lead to treatments that kill the fungus while minimizing disruption to cave ecosystems, the researchers say.

The yeast Candida albicans produces the compound: trans, trans-farnesol.

Candida species are already present in caves where bats hibernate and have been isolated from the bodies of healthy, hibernating bats, said University of Illinois graduate student Daniel Raudabaugh, who conducted the study with Illinois Natural History Survey mycologist Andrew Miller. This suggests that tt-farnesol is unlikely to harm bats or damage cave ecosystems, Raudabaugh said.

“We’re looking for a microbe that’s already associated with bats, that lives in the cave environment and is not a problem for people or other cave life,” he said.

C. albicans is a common resident of human intestines and is found in many other species. The yeast uses tt-farnesol for “quorum-sensing” – at high concentrations, the compound inhibits the growth of fungal projections called mycelia, causing Candida to revert from its invasive form to a more benign, yeast-like state. The compound also disrupts the process by which some bacteria form slimy biofilms that aid in their ability to infect and damage other cells.

“This chemical is known to inhibit other fungi, so we wanted to see if this would inhibit the fungus that causes white-nose syndrome in bats,” Raudabaugh said.

“Several million bats have died of white-nose syndrome in the U.S., but European bats appear to survive the infection better,” Miller said. “It is possible that the microbial makeup of European caves plays a role in bat survival there.”

Raudabaugh first tested different concentrations of tt-farnesol against the white-nose fungus and found that, at the right concentrations, it effectively inhibited it.

“There are Candida species that already produce this concentration of tt-farnesol, which inhibits P. destructans at biologically produced concentrations,” Raudabaugh said.

Further work must be done to search caves for Candida populations that produce tt-farnesol at effective concentrations.

“Inoculating hibernating bats with these microbes to use tt-farnesol as a control agent could increase the bats’ chances of surviving the infection,” Raudabaugh said.

The researchers also discovered that several other Pseudogymnoascus species are less sensitive to tt-farnesol. This suggests the compound could target the white-nose fungus specifically without disrupting other components of the cave ecosystem, Raudabaugh said.

“The goal is to preserve as many of the natural species as possible while eradicating P. destructans,” he said. “That is the hope. And so far, it looks promising.”

The Illinois Department of Natural Resources State Wildlife Grants Program and the Endangered and Threatened Species Program of the INHS supported this research. The INHS is a division of the Prairie Research Institute at the U. of I.

 

Editor’s note: To reach Andrew Miller, call 217-244-0439; email amiller7@illinois.edu.
To reach Daniel Raudabaugh, call 217-244-0493; email raudaba2@illinois.edu.

The paper, “Effect of Trans, Trans-Farnesol on Pseudogymnoascus destructans and Several Closely Related Species,” is available online and from the U. of I. News Bureau.  

 

 

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010