Strategic Communications and Marketing News Bureau

Water theory is watertight, researchers say

Steve Granick, professor of materials science and engineering, of chemistry and of physics, has solved the mystery of hydrophobic surfaces.

Steve Granick, professor of materials science and engineering, of chemistry and of physics, has solved the mystery of hydrophobic surfaces.

CHAMPAIGN, Ill. – There may be tiny bubbles in the wine, but not at the interface between water and a waxy coating on glass, a new study shows.

The behavior of water when placed in contact with hydrophobic (water-repellent) surfaces, such as raincoats and freshly waxed cars, has puzzled scientists for a long time. According to a controversial theoretical prediction, water near a hydrophobic surface will pull away and leave a thin layer of depleted water at the surface – that is, water molecules at the interface will pack less tightly than usual.

Now, a team of researchers at the University of Illinois at Urbana-Champaign and Argonne National Laboratory has resolved the controversy. Using near-perfect hydrophobic surfaces and synchrotron X-ray measurement techniques, the researchers found the theoretical prediction to be correct. They report their findings in the Dec. 31 issue of the journal Physical Review Letters.

“Previous experiments have been interpreted sometimes in favor of a depletion layer, sometimes against, and sometimes as indicating intimate solid-water contact in places and ‘nanobubbles’ in others,” said Steve Granick, a professor of materials science and engineering, chemistry and physics at Illinois.

“Part of our study was to help understand why there was so much disagreement in the scientific literature,” said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory on campus and at the university’s Beckman Institute for Advanced Science and Technology.

To study the nature of hydrophobicity, the researchers first prepared a nearly ideal hydrophobic surface – a self-assembled methyl-terminated octadecylsilane monolayer. Then they made synchrotron X-ray measurements of the interface between water and monolayer.

The measurements revealed a depletion layer, about one water molecule in thickness. The depletion layer was present with and without air dissolved in the water. Because no nanobubbles were seen, bubbles must not play a significant role in hydrophobicity, the researchers conclude.

The synchrotron X-ray data “unambiguously confirm the theoretical expectation that water, when it meets a planar hydrophobic surface, forms a depletion layer,” the researchers write.

“We found that in a real system – more complicated than the theory assumes – the theory does capture the essence,” Granick said. “The next time I see water beading on a raincoat, my vision of how the water molecules experience that raincoat is going to be different.”

The research team included Illinois graduate student and lead author Adelé Poynor, graduate student Liang Hong, physicist Ian Robinson (now at University College London); and synchrotron X-ray expert Paul A. Fenter and postdoctoral researcher Zhan Zhang, both at Argonne National Laboratory.

The National Science Foundation, through the Center of Advanced Materials for the Purification of Water Systems at Illinois, and the U.S. Department of Energy funded the work.

Editor’s note: To reach Steve Granick, call 217-333-5720; e-mail: sgranick@illinois.edu.

Read Next

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Engineering Civil and Environmental Engineering Professor Nishant Garg, center, is joined by fellow researchers, from left: Yujia Min, Hossein Kabir, Nishant Garg, center, Chirayu Kothari and M. Farjad Iqbal, front right. In front are examples of clay samples dissolved at different concentrations in a NaOH solution. The team invented a new test that can predict the performance of cementitious materials in mere 5 minutes. This is in contrast to the standard ASTM tests, which take up to 28 days. This new advance enables real-time quality control at production plants of emerging, sustainable materials. Photo taken at the University of Illinois Urbana-Champaign on Monday, Feb. 3, 2025. (Photo by Fred Zwicky / University of Illinois Urbana-Champaign)

Researchers develop a five-minute quality test for sustainable cement industry materials

A new test developed at the University of Illinois Urbana-Champaign can predict the performance of a new type of cementitious construction material in five minutes — a significant improvement over the current industry standard method, which takes seven or more days to complete. This development is poised to advance the use of next-generation resources called supplementary cementitious materials — or SCMs — by speeding up the quality-check process before leaving the production floor.

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010