Strategic Communications and Marketing News Bureau

Water disinfection byproduct disrupts reproductive hormones, damages pituitary in female mice

CHAMPAIGN, Ill. — Chemical disinfection makes water from both natural sources and wastewater streams drinkable; however, the process also creates byproducts, not all of which are understood or regulated. A new study from University of Illinois Urbana-Champaign researchers has found that one byproduct disrupts hormones in the brain that regulate the female reproductive cycle in mice and also damages cells in the pituitary gland.

Iodoacetic acid, or IAA, is created when an oxidizing disinfectant such as chlorine reacts with the iodide naturally present in water, said study leader Lori Raetzman, a professor of molecular and integrative physiology. The new study’s findings of IAA’s effects on reproductive regulation in the brain complement previous work by study co-author Jodi Flaws, a professor of comparative biosciences, which found that IAA also disrupts function in and causes damage to ovary cells, indicating that the chemical could impact the entire reproductive system.

“We know we need to disinfect water, but the water that’s coming out of our taps isn’t pure – regulators only screen for the things they know about. Water regulatory bodies have not been looking for IAA,” Raetzman said. “This study is contributing to the growing body of evidence that suggests that IAA may impact reproduction, so it might be reasonable to have screening for this too, and to establish a safe level for it.”

In the new study, published in the journal Toxological Sciences, the researchers gave mice drinking water containing IAA at levels comparable to possible human exposure, as well as a control group of mice that were given water with no IAA present, for 35-40 days. Then they measured the production of reproduction-regulating factors in two key parts of the neuroendocrine system – the hypothalamus and the pituitary.   

“Mice are often used as models for the human reproductive system because they have estrous cycles that are similar to human menstrual cycles,” said graduate student Rachel Gonzalez, the first author of the study. “The hypothalamus and the pituitary are the master regulators of the endocrine system. It’s a good foundation to say that a human exposed to a certain amount of IAA could potentially have similar effects.”

The researchers found that, even at low levels, IAA disrupted production of a key reproduction-regulating factor in the hypothalamus. At higher levels, IAA reduced pituitary production of follicle stimulating hormone, a key hormone for promoting egg maturation in the ovaries leading up to ovulation. The hormone also is linked to estrogen production.

“Hypothetically, a persistent reduction in follicle stimulating hormone over a long term could potentially lead to an issue with the development of follicles in the ovaries, which house the eggs and release them during ovulation,” Gonzalez said. “In their study of ovarian effects, our colleague in the Flaws lab did see issues with folliculogenesis in cell cultures, so this work shows that IAA may be affecting the whole reproductive axis.”

In addition, the researchers saw toxic effects, including DNA damage, in the pituitaries of the mice that consumed IAA. Because of this finding and the earlier findings from the Flaws lab regarding ovarian cell damage, the researchers are now investigating whether and how exposing pregnant mice to IAA in drinking water affects their pups.

“These chemicals will cause breaks in the DNA that, if not repaired properly, could lead to mutations in the DNA that would be propagated and might lead to further dysfunction – either dysfunction of the tissue because the cells aren’t working properly or diseases like cancer,” Raetzman said. “Some of the importance of this is because DNA damage could be transmitted generationally, so if mom’s eggs get damaged, they may pass on DNA damage to the offspring.”

The researchers hope that the continued study of IAA’s effects on both the neuroendocrine and ovarian aspects of the female reproductive system can help establish a safe level of exposure to guide future regulations, Raetzman said.

The National Institutes of Health supported this work.

Editor’s Note: To reach Lori Raetzman, email raetzman@illinois.edu

The paper “Iodoacetic acid, a water disinfection byproduct, disrupts hypothalamic, and pituitary reproductive regulatory factors and induces toxicity in the female pituitary” is available online.

DOI: 10.1093/toxsci/kfab106

Read Next

Life sciences Photo of Michael Ward standing in tall grass on a riverbank.

How are migrating wild birds affected by H5N1 infection in the U.S.?

Each spring, roughly 3.5 billion wild birds migrate from their warm winter havens to their breeding grounds across North America, eating insects, distributing plant seeds and providing a variety of other ecosystem services to stopping sites along the way. Some also carry diseases like avian influenza, a worry for agricultural, environmental and public health authorities. […]

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010