blog navigation

Engineering

blog posts

  • Small mechanical forces have big impact on embryonic stem cells

    CHAMPAIGN, Ill. - Applying a small mechanical force to embryonic stem cells could be a new way of coaxing them into a specific direction of differentiation, researchers at the University of Illinois report. Applications for force-directed cell differentiation include therapeutic cloning and regenerative medicine.

  • Small in size, big on power: New microbatteries a boost for electronics

    CHAMPAIGN, Ill. - Though they be but little, they are fierce. The most powerful batteries on the planet are only a few millimeters in size, yet they pack such a punch that a driver could use a cellphone powered by these batteries to jump-start a dead car battery - and then recharge the phone in the blink of an eye.

  • Six professors at Illinois named 2012 AAAS fellows

    CHAMPAIGN, Ill. - Six faculty members at the University of Illinois have been named 2012 fellows of the American Association for the Advancement of Science: animal biology professor Chi-Hing Christina Cheng, electrical and computer engineering professor Kent Choquette, psychology professor Neal Cohen, chemistry professor So Hirata, anthropology professor Lisa Lucero and physics professor Philip Phillips.

  • Silver pen has the write stuff for flexible electronics

    CHAMPAIGN, Ill. - The pen may have bested the sword long ago, but now it's challenging wires and soldering irons.

  • Shrinky Dinks close the gap for nanowires

    CHAMPAIGN, Ill. - How do you put a puzzle together when the pieces are too tiny to pick up? Shrink the distance between them.

  • Shrimp-inspired camera may enable underwater navigation

    The underwater environment may appear to the human eye as a dull-blue, featureless space. However, a vast landscape of polarization patterns appear when viewed through a camera that is designed to see the world through the eyes of many of the animals that inhabit the water. 

  • Shape-shifting organic crystals use memory to improve plastic electronics

    Researchers have identified a mechanism that triggers shape-memory phenomena in organic crystals used in plastic electronics. Shape-shifting structural materials are made with metal alloys, but the new generation of economical printable plastic electronics is poised to benefit from this phenomenon, too. Shape-memory materials science and plastic electronics technology, when merged, could open the door to advancements in low-power electronics, medical electronics devices and multifunctional shape-memory materials.

  • Shape-shifting agent targets harmful bacteria in the stomach

    A new shape-shifting polymer can target and kill Helicobacter pylori bacteria in the stomach without killing helpful bacteria in the gut.

  • Shape of tumor may affect whether cells can metastasize

    Only a few cells in a cancerous tumor are able to break away and spread to other parts of the body, but the curve along the edge of the tumor may play a large role in activating these tumor-seeding cells, according to a new University of Illinois study.

  • Self-healing tech charges up performance for silicon-containing battery anodes

    Researchers at the University of Illinois have found a way to apply self-healing technology to lithium-ion batteries to make them more reliable and last longer.

  • Self-healing electronics could work longer and reduce waste

    CHAMPAIGN, Ill. - When one tiny circuit within an integrated chip cracks or fails, the whole chip - or even the whole device - is a loss. But what if it could fix itself, and fix itself so fast that the user never knew there was a problem?

  • Self-cooling observed in graphene electronics

    CHAMPAIGN, Ill. - With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

  • Self-assembling structures open door to new class of materials

    CHAMPAIGN, Ill. - Researchers at the University of Illinois and Northwestern University have demonstrated bio-inspired structures that self-assemble from simple building blocks: spheres.

  • Seatbelt laws encourage obese drivers to buckle up

    CHAMPAIGN, Ill. - Obesity is associated with many health risks, including heart disease and diabetes, but University of Illinois researchers have found a possible way to mitigate one often-overlooked risk: not buckling up in the car.

  • Scott R. White, pioneer of self-healing materials, has died

    University of Illinois aerospace engineering professor Scott R. White, an innovator of self-healing and self-regulating materials, died Monday of cancer at age 55.

  • Scientists prove graphene's edge structure affects electronic properties

    CHAMPAIGN, Ill. - Graphene, a single-atom-thick sheet of carbon, holds remarkable promise for future nanoelectronics applications. Whether graphene actually cuts it in industry, however, depends upon how graphene is cut, say researchers at the University of Illinois.

  • Science at Illinois feeds the world, furthers health, protects the planet

    Illinois scientists are helping power plants run more efficiently, designing better, longer-lasting batteries, finding new ways to target cancerous tumors, and developing robots that can aid in construction, in agricultural fields and even inside the human body.

  • Rethinking Brownian motion with the emperor's new clothes

    CHAMPAIGN, Ill. - In the classic fairy tale, "The Emperor's New Clothes," Hans Christian Andersen uses the eyes of a child to challenge conventional wisdom and help others to see more clearly. In similar fashion, researchers at the University of Illinois have now revealed the naked truth about a classic bell-shaped curve used to describe the motion of a liquid as it diffuses through another material.

  • Research: Graphene grows better on certain copper crystals

    CHAMPAIGN, Ill. - New observations could improve industrial production of high-quality graphene, hastening the era of graphene-based consumer electronics, thanks to University of Illinois engineers.

  • Researchers use sound waves to advance optical communication

    Illinois researchers have demonstrated that sound waves can be used to produce ultraminiature optical diodes that are tiny enough to fit onto a computer chip. These devices, called optical isolators, may help solve major data capacity and system size challenges for photonic integrated circuits, the light-based equivalent of electronic circuits, which are used for computing and communications.

  • Researchers strain to improve electrical material and it's worth it

    CHAMPAIGN, Ill. - Like turning coal to diamond, adding pressure to an electrical material enhances its properties. Now, University of Illinois at Urbana-Champaign researchers have devised a method of making ferroelectric thin films with twice the strain, resulting in exceptional performance.

  • Researchers put new spin on old technique to engineer better absorptive materials

    A team of University of Illinois bioengineers has taken a new look at an old tool to help characterize a class of materials called metal organic frameworks – MOFs for short. MOFs are used to detect, purify and store gases, and could help solve some of the worlds most challenging energy, environmental and pharmaceutical challenges – they can even pull water molecules straight from the air to provide relief from droughts.

  • Researchers make headway in desalination technology

    Engineers at the University of Illinois have taken a step forward in developing a saltwater desalination process that is potentially cheaper than reverse osmosis and borrows from battery technology. In their study, the researchers are focusing on new materials that could make desalination of brackish waters economically desirable and energy efficient.

  • Researchers look to patterns to envision new engineering field

    The phenomenon that forms interference patterns on television displays when a camera focuses on a pattern like a person wearing stripes has inspired a new way to conceptualize electronic devices. Researchers at the University of Illinois are showing how the atomic-scale version of this phenomenon may hold the secrets to help advance electronics design to the limits of size and speed. 

  • Researchers develop transistors that can switch between two stable energy states

    Engineers are unveiling an upgrade to the transistor laser that could be used to boost computer processor speeds – the formation of two stable energy states and the ability to switch between them quickly. 

  • Researchers develop model to show how bacteria grow in plumbing systems

    Bacteria in tap water can multiply when a faucet isn’t used for a few days, such as when a house is vacant over a week’s vacation, a new study from University of Illinois engineers found. The study suggests a new method to show how microbial communities, including those responsible for illnesses like Legionnaires’ disease, may assemble inside the plumbing systems of homes and public buildings

  • Researchers develop dynamic templates critical to printable electronics technology

    When it comes to efficiency, sometimes it helps to look to Mother Nature for advice – even in technology as advanced as printable, flexible electronics.

    Researchers at the University of Illinois have developed bio-inspired dynamic templates used to manufacture organic semiconductor materials that produce printable electronics. It uses a process similar to biomineralization – the way that bones and teeth form. This technique is also eco-friendly compared with how conventional electronics are made, which gives the researchers the chance to return the favor to nature.  

  • Researchers demonstrate existence of new form of electronic matter

    Researchers have produced a “human scale” demonstration of a new phase of matter called quadrupole topological insulators that was recently predicted using theoretical physics. These are the first experimental findings to validate this theory.

  • Regenerating plastic grows back after damage

    CHAMPAIGN, Ill. - Looking at a smooth sheet of plastic in one University of Illinois laboratory, no one would guess that an impact had recently blasted a hole through it.

  • Record-speed data transmission could make big data more accessible

    With record-breaking speeds for fiber-optic data transmission, University of Illinois engineers have paved a fast lane on the information superhighway – creating on-ramps for big data in the process.

  • Reclaimed water could help power plants run more efficiently, study finds

    The water going down the drain could help keep the lights on, according to a new study showing that reclaimed water – municipal wastewater that has been treated or cleaned – could be more efficient for cooling power plants than water taken from the local environment.

  • Radiation exposure: How much is too much

    A Minute With™... James F. Stubbins, professor and head of the department of nuclear, plasma, and radiological engineering

  • Radiation exposure: How much is too much

    A Minute With™...  James F. Stubbins, professor and head of nuclear, plasma, and radiological engineering

  • Quick test finds signs of sepsis in a single drop of blood

    A new portable device can quickly find markers of deadly, unpredictable sepsis infection from a single drop of blood.

  • Proteins that work at the end of DNA could provide cancer insight

    CHAMPAIGN, lll. - New insights into a protein complex that regulates the very tips of chromosomes could improve methods of screening anti-cancer drugs.

  • Prosthetic arms can provide controlled sensory feedback, study finds

    Losing an arm doesn’t have to mean losing all sense of touch, thanks to prosthetic arms that stimulate nerves with mild electrical feedback. University of Illinois researchers have developed a control algorithm that regulates the current so a prosthetics user feels steady sensation, even when the electrodes begin to peel off or when sweat builds up. 

  • Portable device can quickly determine the extent of an eye injury

    An engineer and an ophthalmologist are working together to develop a portable sensor that can quickly and inexpensively determine whether an eye injury is mild or severe. The device, called OcuCheck, works by measuring levels of vitamin C in the fluids that coat or leak from the eye. The sensor could speed efforts to determine the extent of eye injuries at accident sites, in rural areas lacking ophthalmology specialists or on the battlefield, the researchers said.

  • Physicists isolate bound states in graphene superconductor junctions

    CHAMPAIGN, Ill. - Illinois researchers have documented the first observations of some unusual physics when two prominent electric materials are connected: superconductors and graphene.

  • Pediatric vaccine stockpile policies need to be revisited, researcher says

    CHAMPAIGN, Ill. - Vaccine manufacturers and public health decision-makers need to collaborate in a more efficient and effective manner not only to reduce the likelihood of supply shortages for pediatric vaccines but also to maximize community immunity by using vaccine doses to increase coverage, according to research published by a University of Illinois researcher who specializes in statistics and data analysis.

  • Particle-free silver ink prints small, high-performance electronics

    CHAMPAIGN, Ill. - University of Illinois materials scientists have developed a new reactive silver ink for printing high-performance electronics on ubiquitous, low-cost materials such as flexible plastic, paper or fabric substrates.

  • Paper tubes make stiff origami structures

    CHAMPAIGN, Ill. – From shipping and construction to outer space, origami could put a folded twist on structural engineering.

  • Packaging expert sees a social revolution in the evolving barcode

    CHAMPAIGN, Ill. - What if you could trace the history of everything you buy back to its origins? Using your smart phone camera, you could learn what factory made the ingredients in your heart medication, what country grew the corn in your breakfast cereal, or even how to recycle the phone. You could follow the whole life cycle of a product and everyone who handled it along the way to ensure that the medicine you're taking isn't counterfeit and the food you're eating is safe.

  • Off the shelf, on the skin: Stick-on electronic patches for health monitoring

    CHAMPAIGN, Ill. — Wearing a fitness tracker on your wrist or clipped to your belt is so 2013. Engineers at the University of Illinois at Urbana-Champaign and Northwestern University have demonstrated thin, soft stick-on patches that stretch and move with the skin and incorporate commercial, off-the-shelf chip-based electronics for sophisticated wireless health monitoring.

  • Nowhere to hide: New device sees bacteria behind the eardrum

    CHAMPAIGN, lll. - Doctors can now get a peek behind the eardrum to better diagnose and treat chronic ear infections, thanks to a new medical imaging device invented by University of Illinois researchers. The device could usher in a new suite of non-invasive, 3-D diagnostic imaging tools for primary-care physicians.

  • Nick Holonyak Jr. elected a charter fellow of the National Academy of Inventors

    CHAMPAIGN, Ill. - Nick Holonyak Jr., a John Bardeen Professor of Electrical and Computer Engineering and Physics at the University of Illinois, has been chosen to be a charter fellow of the National Academy of Inventors.

  • Nick Holonyak Jr. and his work on visible LED to be feted at Illini Union event

    CHAMPAIGN, Ill. - Fifty years ago, Nick Holonyak Jr., then a consulting scientist at General Electric, demonstrated the first visible LED. Today, the light-emitting diode is used in everything from flashlights to spacecraft and countless applications in between.

  • Next up: Environmentally safe electronics that also vanish in the body

    CHAMPAIGN, Ill. - Physicians and environmentalists alike could soon be using a new class of electronic devices: small, robust and high performance, yet also biocompatible and capable of dissolving completely in water - or in bodily fluids.

  • New tissue-imaging technology could enable real-time diagnostics, map cancer progression

    A new microscope system can image living tissue in real time and in molecular detail, without any chemicals or dyes, report researchers at the University of Illinois.

  • New theory may shed light on dynamics of large-polymer liquids

    CHAMPAIGN, Ill. - A new physics-based theory could give researchers a deeper understanding of the unusual, slow dynamics of liquids composed of large polymers. This advance provides a better picture of how polymer molecules respond under fast-flow, high-stress processing conditions for plastics and other polymeric materials.

  • New technology looks into the eye and brings cells into focus

    CHAMPAIGN, Ill. — Eye doctors soon could use computing power to help them see individual cells in the back of a patient’s eye, thanks to imaging technology developed by engineers at the University of Illinois. Such detailed pictures of the cells, blood vessels and nerves at the back of the eye could enable earlier diagnosis and better treatment for degenerative eye and neurological diseases.