Strategic Communications and Marketing News Bureau

Ultrasound generates intense mechanoluminescence, researchers report

The phenomenon of mechanoluminescence was first discovered in 1605 by Sir Frances Bacon from scratching sugar with a knife.  The top image is a photograph of the mechanoluminescence of N-acetylanthranilic acid crystals crushed between two transparent windows. The second image is a photograph of the mechanoluminescence of N-acetylanthranilic acid crystals in the shape of the University of Illinois logo crushed between two transparent windows.

The phenomenon of mechanoluminescence was first discovered in 1605 by Sir Frances Bacon from scratching sugar with a knife. The top image is a photograph of the mechanoluminescence of N-acetylanthranilic acid crystals crushed between two transparent windows. The second image is a photograph of the mechanoluminescence of N-acetylanthranilic acid crystals in the shape of the University of Illinois logo crushed between two transparent windows.

CHAMPAIGN, Ill. – Many people know that if you bite or break a Wint-O-Green Lifesaver in the dark, you will see a spark of green light. That light is called mechanoluminescence, also known as triboluminescence.

This phenomenon was first discovered in 1605 by Sir Francis Bacon, who observed light emission when scraping a lump of sugar with a knife.

Typically, mechanoluminescence is generated by simply grinding, cleaving, biting, or scratching a material, and this process produces a very dim light.

As reported in the Nov. 9 issue of Nature, chemistry professor Kenneth S. Suslick and graduate student Nathan C. Eddingsaas at the University of Illinois at Urbana-Champaign have used high-intensity ultrasound in liquid slurries of sugar and other organic crystals to create mechanoluminescence up to 1,000 times more intense than from grinding.

The light is generated from a static electric discharge created when a crystal, such as sugar, is fractured. The mechanoluminescence is much the same as lightning during a thunderstorm.

Ultrasound in a liquid, just like any sound waves, causes oscillation of expansion and compression of the liquid. If the ultrasound is loud enough, the liquid can be pulled apart transiently forming millions of bubbles, each with a diameter smaller than a shaft of hair. These bubbles grow and contract with each sound wave and if conditions are just right, they can violently implode. These imploding bubbles form shock waves in the liquid, and Suslick previously has shown that these shock waves will drive suspended metal particles into one another at roughly half the speed of sound in the liquid.

At such high velocities, the malleable metal particles melted together. The metal particles were replaced with brittle organic crystals such as sugar in these studies. When these crystals collide with one another, they shatter into pieces, and that produces the mechanoluminescence as the fractured crystal surfaces pull apart and cause an electric discharge.

The ultrasonic waves occur 20,000 times a second, creating many high-speed collisions between solid particles, and that is why the glow is so much brighter than that produced by hand grinding.

This new route to producing mechanoluminescence will allow for more detailed studies, which may shed new light on this phenomenon.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010