Strategic Communications and Marketing News Bureau

Two undergrads improve plant carbon-cycle models

CHAMPAIGN, Ill. — In the summer of 2012, two undergraduate students tackled a problem that plant ecology experts had overlooked for 30 years. The students demonstrated that different plant species vary in how they take in carbon dioxide and emit water through stomata, the pores in their leaves. The data boosted the accuracy of mathematical models of carbon and water fluxes through plant leaves by 30 to 60 percent.

The researchers, based at the University of Illinois, report their findings in the journal Nature Ecology and Evolution.

Abordo was a mathematics major at the time of the study. “It was a nice change from working on chalkboards all the time to doing lab experiments and working out in the fields,” he said.

Mark Abordo was a mathematics major at the time of the study. “It was a nice change from working on chalkboards all the time to doing lab experiments and working out in the fields,” he said.

In hindsight, the discovery might seem obvious, said U. of I. plant biology professor Andrew Leakey, who mentored the students and is a co-author of the study.

“If I were to go to a conference of plant physiologists and say, ‘Hey, is there diversity in the way that plant stomata behave?’ every one of them would say, ‘yes,’” Leakey said. “And yet, for most of the last 30 years, our community has failed to describe that diversity in terms of the math.”

Kevin Wolz majored in civil engineering and biology as an undergraduate at Illinois. This allowed him to appreciate both the complexity of the natural world and the simplicity and power of mathematical models.

Kevin Wolz majored in civil engineering and biology as an undergraduate at Illinois. This allowed him to appreciate both the complexity of the natural world and the simplicity and power of mathematical models.

This oversight stems in part from the fact that few plant biologists know how – or are naturally inclined – to convert their biological insights into the mathematical equations that modelers need to improve the accuracy of their work, Leakey said.

“As a result, modelers have been forced to assume that the stomata of all species open and close in response to environmental conditions in the same way,” he said.

This assumption was based on the work of a team led by Joseph Berry of the Carnegie Institution for Science. The group discovered that the behavior of stomata could be described by a single, simple equation. But Berry and his colleagues made their initial breakthrough by measuring soybean. Since then, very few plant scientists had questioned whether the equation for soybean also worked in other species. As a result, modelers were stuck with the one version of the equation, Leakey said.

“This was an oversimplification that likely led to errors in model predictions of how well crops and forests grow in different times and places,” he said.

“It’s impossible to measure every plant everywhere through time across the globe,” said Kevin Wolz, who conducted the new research with Mark Abordo when both were undergrads. “So, we instead measure a few things experimentally and then represent that with some math, which is a model.”

Modeling is a useful tool for making predictions about how various biological systems will function over time, Wolz said. Models can help determine which crops will do well in specific geographic locations and whether they will produce enough food or biomass to make their cultivation profitable. They also help predict how plants will respond to pollution, drought or future climate conditions, giving policymakers insight into the potential harms or benefits associated with specific land use decisions.  

At the time of the study, Wolz was majoring in biology and civil and environmental engineering. This gave him insight into both the complexity of the natural world and the simplicity and power of mathematical models. He and Abordo, a mathematics major at the time, jumped at the chance to study how plants adjust their stomata in response to different atmospheric conditions.

“It was a nice change from working on chalkboards all the time to doing lab experiments and working out in the fields,” Abordo said.

The two got up before dawn every weekday over the summer to collect leaves from 15 tree species and take them back to the lab, where they used gas exchange equipment to measure how the leaves responded to different light and atmospheric conditions. Each leaf was put through its paces with tests lasting roughly six hours.

“It’s a bit like going to the doctor and having a cardio test where they put you on a treadmill,” Leakey said. “Essentially, that’s what Kevin and Mark were doing; they were taking leaves and running them under different scenarios to learn how the leaves responded.” 

Their findings were not surprising, Wolz said.            

“We demonstrated that not every plant is alike,” he said.

The team found a significant amount of variation in the way that different tree species responded to things like light, heat, carbon dioxide concentration and humidity. Altering standard models with the new data dramatically improved the models’ accuracy, the researchers found.

“We saw a 30 to 60 percent reduction in error,” Leakey said.

“This research shows that training people like Kevin in an interdisciplinary way allows us to break down communication barriers in science – between modelers and plant scientists, for example,” Leakey said. “This is only one of a long list of problems that would benefit from such an approach.”

More work is needed to extend the new approach to other plant species, and to broaden the effort to include models that look at dynamics at the ecosystem scale, the researchers said.

Andrew Leakey is an affiliate of the Carl R. Woese Institute for Genomic Biology at Illinois. The National Science Foundation and Energy Biosciences Institute support this research.

Editor’s notes:

To reach Kevin Wolz, email wolz1@illinois.edu.
To reach Mark Abordo, email mabordo1@gmail.com.
To reach Andrew Leakey, call 217-766-9155; email leakey@illinois.edu.
The paper “Diversity in stomatal function is integral to modeling plant carbon and water fluxes” is available online and from the U. of I. News Bureau.
DOI: 10.1038/s41559-017-0238-z.

Read Next

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Engineering Civil and Environmental Engineering Professor Nishant Garg, center, is joined by fellow researchers, from left: Yujia Min, Hossein Kabir, Nishant Garg, center, Chirayu Kothari and M. Farjad Iqbal, front right. In front are examples of clay samples dissolved at different concentrations in a NaOH solution. The team invented a new test that can predict the performance of cementitious materials in mere 5 minutes. This is in contrast to the standard ASTM tests, which take up to 28 days. This new advance enables real-time quality control at production plants of emerging, sustainable materials. Photo taken at the University of Illinois Urbana-Champaign on Monday, Feb. 3, 2025. (Photo by Fred Zwicky / University of Illinois Urbana-Champaign)

Researchers develop a five-minute quality test for sustainable cement industry materials

A new test developed at the University of Illinois Urbana-Champaign can predict the performance of a new type of cementitious construction material in five minutes — a significant improvement over the current industry standard method, which takes seven or more days to complete. This development is poised to advance the use of next-generation resources called supplementary cementitious materials — or SCMs — by speeding up the quality-check process before leaving the production floor.

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010