Strategic Communications and Marketing News Bureau

Triblock spheres provide a simple path to complex structures

CHAMPAIGN, Ill. – University of Illinois materials scientists have developed a simple, generalizable technique to fabricate complex structures that assemble themselves.

Their advance, published in the Jan. 20 issue of Nature, utilizes a new class of self-assembling materials that they developed. The team demonstrated that they can produce a large, complex structure – an intricate lattice – from tiny colloidal particles called triblock Janus spheres.

“This is a big step forward in showing how to make non-trivial, non-obvious structures from a very simple thing,” said Steve Granick, Founder Professor of Engineering at the University of Illinois and a professor of materials science and engineering, chemistry, and physics. “People know a lot about how to do it with molecules – soaps for example – but scientists and engineers know very little about how to make it happen with particles. Particles are very different from molecules: They’re big, they’re nonflexible, and they have lots of critically different materials properties.”

Much of the work to date in making complicated structures from colloidal particles has been done through computer simulation. Researchers model complicated designs built of highly complicated particles.

However, creating complicated building blocks for experimental use is difficult. By contrast, the triblock Janus spheres’ elegant simplicity makes them ideal for real-world manufacture.

“It was conceptually challenging to fabricate a complex porous material from a simple design, especially in the field of colloidal particles,” said graduate student Qian Chen, a co-author of the paper. “Here, we achieve that with really easy designs that we can use in experiments.”

Granick’s group is well-known for its work with Janus particles. Named for the dual-natured Roman god, Janus particles have two sides or segments of different surface chemistry. Having explored spheres with two different-natured halves, Chen had the idea to make spheres with three “stripes” of reactivity, dubbed triblock Janus spheres. The center band is charged, while the poles are hydrophobic, or water-adverse.

“After many experiments with Janus particles, I wanted to see if adding one more segment would introduce more surprises,” Chen said. “Usually in colloid science people use particles that have a uniform surface chemistry. But for this particle, it’s like a block polymer. It has three segments of chemistry.”

In a salt-water solution, the hydrophobic poles are drawn together, while the charged equators repel one another. As a result, the spheres form a complex lattice where only the poles are in contact with one another. The hydrophobic polar caps are large enough to come into contact with two other spheres. This causes the spheres to arrange into a formation like a six-pointed star, creating a sheet of delicate lace.

Such porous sheets of schizoid particles, hydrophobic and hydrophilic at the same time, could have applications as specialized filters.

“It’s like a better soap,” Granick said. “Just as soap is very good at dissolving both fats and water-soluble things, our new lacy lattice can also filter out both water-soluble and oil-soluble matter. We have this wonderful self-produced lacy structure that’s oil-loving and water-loving at different parts in a periodic array.”

The team could apply their simple particle design to fabricate other planar laces. Adjusting the size of the spheres or the proportion of the bands could lead to other lattice patterns or tuned pore sizes. In addition, further exploration of triblock spheres and other Janus particles could open doors to a broad area of self-assembly of complex structures from simple materials.

“Someday maybe we could have a soup of different components, remove some of it, and there would be a microelectronic chip,” Granick said. “It’s a brand new area. The materials are so different that the structures that they form will be different.”

Research scientist Sung Chul Bae also was a co-author of the paper. The U.S. Department of Energy sponsored this work through the Frederick Seitz Materials Research Laboratory at the U. of I.

Editor’s note: To contact Steve Granick, call 217-333-5720; e-mail: sgranick@illinois.edu.

Read Next

Life sciences Photo of Michael Ward standing in tall grass on a riverbank.

How are migrating wild birds affected by H5N1 infection in the U.S.?

Each spring, roughly 3.5 billion wild birds migrate from their warm winter havens to their breeding grounds across North America, eating insects, distributing plant seeds and providing a variety of other ecosystem services to stopping sites along the way. Some also carry diseases like avian influenza, a worry for agricultural, environmental and public health authorities. […]

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010