Strategic Communications and Marketing News Bureau

Tiny laser gives big boost to high-speed data transmission

CHAMPAIGN, Ill. – High-speed communication just got a turbo boost, thanks to a new laser technology developed at the University of Illinois that transmits error-free data over fiber optic networks at a blazing fast 40 gigabits per second – the fastest in the United States.

Milton Feng, the Nick Holonyak Jr. Chair in Electrical and Computer Engineering, demonstrated the tiny, fast device along with postdoctoral researcher Fei Tan, graduate students Mong-Kai Wu and Michael Liu, and Holonyak, who is an emeritus professor. The team published its results in the journal IEEE Photonics Technology Letters.

As computation shifts into the petascale and beyond, processor speeds have outstripped transfer speeds, creating a bottleneck and hindering applications. Anyone who has tried to stream video over a dial-up Internet connection knows that the fastest processor won’t help the file load quicker. And in the age of “big data” and cloud computing, there’s a lot of information swirling among servers.

Laser devices called oxide VCSELs are used to transmit data over fiber optic cables at high speed. They can carry data faster and in greater quantities than traditional electrical cables.

“The oxide VCSEL is the standard right now for industry,” Feng said. “Today, all the optical interconnects use this technology. The world is in a competition on how to make it fast and efficient, and that’s what this technology is. At the U. of I., we were able to make this technology the fastest in the U.S.”

How fast is it? As a comparison, home high-speed Internet connections can reach speeds of about 100 megabits per second. At 40 gigabits per second, this technology is 400 times faster. Thanks to its small size, the new oxide VCSEL also has excellent energy efficiency – using 100 times less energy than electrical wires – and transmits data very accurately, with no defects detected in an hour of operation.

Fast and accurate data transfer is crucial for personalized medicine, cloud computing and many other applications. For example, in order to harness the power of supercomputing for personalized medicine, an enormous amount of biometric data must be collected from a patient. But the data on their own are not useful without analysis. The data have to be sent from the lab to a computing facility, where they’re analyzed and sent to the patient’s physician to help make a diagnosis or a tailored treatment plan.

“Information is not useful if you cannot transmit it,” Feng said. “If you cannot transfer data, you just generate garbage. So the transfer technology is very important. High-speed data transfer will allow tele-computation, tele-medicine, tele-instruction. It all depends on how fast you can transfer the information.”

The Illinois team’s oxide VCSELs operate at room temperature, so the next step is to finesse the design so they can operate in the very hot environment at data centers.

Feng believes that researchers could push oxide VCSELs to about 60 gigabits per second, but not far beyond that because of the inherent limitations in the materials. But he’s not worried about reaching the limits of VCSEL technology, because in 2004 he and Holonyak developed a new technology ready to step in where VCSEL leaves off: the transistor laser.

Feng is associated with the Micro and Nano Technology Laboratory and the Coordinated Science Laboratory at the U. of I.

To reach Milton Feng, call 217-333-8080; email feng@illinois.edu. The paper, “850nm Oxide-Confined VCSEL With low Relative Intensity Noise and 40Gb/s Error Free Data Transmission,” is available online or from the News Bureau. VCSEL stands for vertical cavity surface emitting laser.

Read Next

Announcements Graphic says: 2025 Highly Cited Researchers. Background is orange with an image of journal articles stacked and open.

Twelve Illinois scientists rank among the world’s most influential

CHAMPAIGN, Ill. — Twelve scientists at the University of Illinois Urbana-Champaign have been named to the 2025 Clarivate Analytics Highly Cited Researchers list. The list recognizes researchers and social scientists who have demonstrated exceptional influence, as reflected through their publication of multiple papers frequently cited by their peers during the last decade. The highly cited […]

Engineering A tilted view of miscellaneous of multicolored used batteries.

Study shows new hope for commercially attractive lithium extraction from spent batteries

A new study shows that lithium — a critical element used in rechargeable batteries and susceptible to supply chain disruption — can be recovered from battery waste using an electrochemically driven recovery process. The method has been tested on commonly used types of lithium-containing batteries and demonstrates economic viability with the potential to simplify operations, minimize costs and increase the sustainability and attractiveness of the recovery process for commercial use.

Health and Medicine Research team in the lab.

Study: A cellular protein, FGD3, boosts breast cancer chemotherapy, immunotherapy

CHAMPAIGN, Ill. — A naturally occurring protein that tends to be expressed at higher levels in breast cancer cells boosts the effectiveness of some anticancer agents, including doxorubicin, one of the most widely used chemotherapies, and a preclinical drug known as ErSO, researchers report. The protein, FGD3, contributes to the rupture of cancer cells disrupted […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010