Strategic Communications and Marketing News Bureau

Team uses a cellulosic biofuels byproduct to increase ethanol yield

CHAMPAIGN, Ill. – Scientists report in Nature Communications that they have engineered yeast to consume acetic acid, a previously unwanted byproduct of the process of converting plant leaves, stems and other tissues into biofuels. The innovation increases ethanol yield from lignocellulosic sources by about 10 percent.

The new advance will streamline the fermentation process and will simplify plant breeding and pretreatment of the cellulose, the researchers say.

The new advance will streamline the fermentation process and will simplify plant breeding and pretreatment of the cellulose, the researchers say.

Lignocellulose is the fibrous material that makes up the structural tissues of plants. It is one of the most abundant raw materials on the planet and, because it is rich in carbon it is an attractive source of renewable biomass for biofuels production.

The yeast Saccharomyces cerevisiae is good at fermenting simple sugars (such as those found in corn kernels and sugarcane) to produce ethanol. But coaxing the yeast to feast on plant stems and leaves is not so easy. Doing it on an industrial scale requires a number of costly steps, one of which involves breaking down hemicellulose, a key component of lignocellulose.

“If we decompose hemicellulose, we obtain xylose and acetic acid,” said University of Illinois food science and human nutrition professor Yong-Su Jin, who led the research with principal investigator Jamie Cate, of the University of California at Berkeley and the Lawrence Berkeley National Laboratory. Jin and Cate are affiliates of the Energy Biosciences Institute (EBI), which funded the research. Jin is an affiliate of the Institute for Genomic Biology at the U. of I.

“Xylose is a sugar; we can engineer yeast to ferment xylose,” Jin said. “However, acetic acid is a toxic compound that kills yeast. That is one of the biggest problems in cellulosic ethanol production.”

In an earlier study, graduate student Soo Rin Kim (now an EBI fellow) engineered S. cerevisiae to more efficiently consume xylose. This improved ethanol output, but the process generated an excess of NADH, an electron-transfer molecule that is part of the energy currency of all cells. The buildup of acetic acid also killed off much of the yeast.

After discussing the problem with Jin, Cate had an idea – perhaps the team could induce the yeast to consume acetic acid. It later occurred to Jin that that process might also use up the surplus NADH from xylose metabolism.

By reviewing earlier studies, postdoctoral researcher Na Wei found that another organism, a bacterium, could consume acetic acid. She identified the enzymes that catalyzed this process and saw that one of them not only converted acetic acid into ethanol, but also would use the surplus NADH from xylose metabolism.

The team was not ready to start putting the genes into their yeast, however. They first had to determine whether their efforts were likely to succeed.

“One challenge with yeast is it has evolved to do one thing really well,” Cate said. “When you start adding these new modules into what it’s already doing, it’s not obvious that it’s going to work up front.”

To get a better idea of the feasibility of the idea, graduate student Josh Quarterman used computer simulations to see how adding the new genes to the yeast’s metabolic repertoire would affect its ethanol output. His calculations indicated that the pathway Wei had identified would boost ethanol production.

Next, Wei did the painstaking work of inserting the desirable genes into the yeast, a process that took several months. When she tested the yeast, she saw that it produced about 10 percent more ethanol than before, in line with Quarterman’s calculations. In further experiments, she demonstrated that the new yeast was in fact making some of the ethanol from acetate, a first for S. cerevisiae.

“We sort of rebuilt how yeast uses carbon,” Cate said.

The breakthrough also will help those who focus on other steps in the biofuels production process, Jin said. Plant geneticists and those involved in pretreatment can stop worrying about finding ways to eliminate acetic acid from lignocellulose, he said.

“Many people are curious about why we don’t have cellulosic biofuel right now,” Jin said. “But it’s not because of one limiting step. We have many limiting steps in growing the biomass, storing, moving, harvesting, decomposing the biomass to the sugar, fermentation and then separation (of the ethanol). The advance that we are reporting involves one of those steps – fermentation. But it also will make other steps in the process a little easier.”

To reach Yong-Su Jin, call 217-333-7981; email ysjin@illinois.edu. The paper, “Enhanced Biofuel Production Through Coupled Acetic Acid and Xylose Consumption,” is available online or from the U. of I. News Bureau.

Read Next

Health and medicine Life sciences Veterinary medicine Two men in a lab. The seated man holds a hologram projection of a brain.

Mutation increases enzyme in mouse brains linked to schizophrenia behaviors

Researchers found a key role for an enzyme regulating glycine in the brain while investigating a rare genetic mutation found in two patients with schizophrenia.

Honors A photo collage featuring all three Sloan Fellowship awardees.

Three Illinois professors named Sloan Research Fellows

Three Illinois scientists are among 126 recipients of the 2025 Sloan Research Fellowships from the Alfred P. Sloan Foundation. According to the foundation, the awardees represent “the very best of early-career science, embodying the creativity, ambition, and rigor that drive discovery forward.” This year’s Illinois recipients are chemistry professors Angad Mehta and Lisa Olshansky, and materials science and engineering professor Yingjie Zhang.

Life sciences Graphic with the title "42nd Insect Fear Film Festival" in a scary font and with a picture of a tarantula.

Insect Fear Film Festival to feature ‘hairy, scary’ tarantulas

CHAMPAIGN, Ill. — The 2025 Insect Fear Film Festival at the University of Illinois Urbana-Champaign will feature “Tarantulas: Hairy, Scary Spiders” as its theme and a Hollywood bug wrangler who works with the 8-legged creatures as a special guest. The festival, which is hosted by the Entomology Graduate Student Association and is in its 42nd […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010