Strategic Communications and Marketing News Bureau

Team discovers rules for breaking into Pseudomonas

CHAMPAIGN, Ill. — Researchers report in the journal Nature that they have found a way to get antibacterial drugs through the nearly impenetrable outer membrane of Pseudomonas aeruginosa, a bacterium that – once it infects a person – is notoriously difficult to treat. 

By bombarding P. aeruginosa with hundreds of compounds and using machine learning to determine the physical and chemical traits of those molecules that accumulated inside it, the team discovered how to penetrate the bacterium’s defenses. They used this information to convert an antibacterial drug that previously had no activity against P. aeruginosa into one that did.

Pseudomonas is still the most difficult to treat gram-negative infection, and gram-negative infections are very challenging to treat in general,” said University of Illinois Urbana-Champaign chemistry professor Paul Hergenrother, who led the work with former graduate student Emily Geddes, a handful of other graduate students and postdoctoral researchers in the Hergenrother lab and collaborators at Roche. “The Food and Drug Administration has not approved a new class of antibiotic drugs against gram-negatives in over 50 years.”

Petri dish with smear of the bacteria.

Pseudomonas aeruginosa causes dangerous infections in the blood, lungs, urinary tract and surgical wounds.

Gram-negative bacteria differ from gram-positive in the composition of their cell walls. P. aeruginosa has a tightly packed outer membrane that’s negatively charged, Geddes said. “This makes it really hard for other molecules to get through by passive diffusion.”

P. aeruginosa also has other defenses, including highly specialized porins that allow it to bring in specific nutrients while keeping out everything else, and efflux pumps that eject unwanted compounds, Geddes said. 

Pseudomonas has 12 efflux pumps, Geddes said. “That really gives it a diversity of drug-resistance mechanisms that some other bacterial species just don’t have. 

“Our goal here was to basically test a bunch of compounds to see what types of molecules get in the bacterial cell and stay in the cell, and hopefully learn some design principles from that,” she said. 

Earlier studies of P. aeruginosa focused primarily on antibiotics, testing which ones could kill or weaken the bacterium, Hergenrother said.

“We took a different approach – testing a variety of nonantibiotic compounds and tracking which ones accumulated inside. We then used machine learning to make sense of the chemical traits that were common to the accumulators,” he said. 

This approach revealed that, among other traits, compounds with a positive charge on the surface and those with more hydrogen-bond-donor surface area were more likely to accumulate inside P. aeruginosa

Such compounds “can create sort of a gap in the bacterial membrane and destabilize it to let other things come through,” Geddes said. 

Once they knew what characteristics a compound must have to penetrate Pseudomonas, the researchers chose to test those rules by modifying an existing antibiotic drug, fusidic acid, that is used to treat gram-positive infections but has no activity against gram-negative bacteria. The researchers modified the drug to create a derivative form, called FA prodrug, that included the features identified in the machine-learning exercise. 

The experiment worked, Geddes said.

“As we increased the positive charge and as we increased the hydrogen-bond-donor surface area, we saw a corresponding increase in accumulation of the FA prodrug in Pseudomonas,” she said. “We saw a 64-fold improvement in activity with those changes.”

“Fusidic acid alone has no activity whatsoever against Pseudomonas,” Hergenrother said. “And so being able to build that in is a pretty powerful demonstration of the rules.”

The FA prodrug itself probably will not be pursued as a candidate drug to fight Pseudomonas infections, Geddes said. But the principles learned in the study will aid the design of new compounds to fight these dangerous, drug-resistant infections. 

Hergenrother also is a professor in the Carle Illinois College of Medicine and the Carl R. Woese Institute for Genomic Biology, and deputy director of the Cancer Center at Illinois

The National Institutes of Health supported this research. 

Editor’s notes:  

To reach Paul Hergenrother, email hergenro@illinois.edu

To reach Emily Geddes, email emilyjgeddes@gmail.com.

The paper “Porin-independent compound accumulation in Pseudomonas enables antibiotic discovery” is available online or from the U. of I. News Bureau.

DOI: 10.1038/s41586-019-0000-0

Read Next

Agriculture Graduate student Andrea Jimena Valdés-Alvarado, left, and food science professor Elvira Gonzalez de Mejia standing in the Edward R. Madigan Laboratory holding samples of the legume pulses they used in the study.

Fermenting legume pulses boosts their antidiabetic, antioxidant properties

CHAMPAIGN, Ill. — Food scientists at the University of Illinois Urbana-Champaign identified the optimal fermentation conditions for pulses ― the dried edible seeds of legumes ― that increased their antioxidant and antidiabetic properties and their soluble protein content. Using the bacteria Lactiplantibacillus plantarum 299v as the microorganism, the team fermented pulses obtained from varying concentrations […]

Expert viewpoints Ukraine’s daring drone attack deep within Russia is significant but not war-redefining, and may hinder U.S. efforts to end the war, says University of Illinois Urbana-Champaign political science professor and international relations expert Nicholas Grossman.

Does Ukraine drone attack inside Russia augur new era of asymmetric warfare?

Champaign, Ill. — University of Illinois Urbana-Champaign political science professor Nicholas Grossman is the author of “Drones and Terrorism: Asymmetric Warfare and the Threat to Global Security” and specializes in international relations. Grossman spoke with News Bureau business and law editor Phil Ciciora about “Operation Spiderweb,” Ukraine’s expertly plotted drone attack inside the Russian mainland. […]

Behind the scenes Photo of a man with his leg lifted and his boot in the foreground, while another man in the foreground reacts.

Staging a fight

CHAMPAIGN, Ill. — A group of theatre students is gathered in a rehearsal room at Krannert Center for the Performing Arts at the University of Illinois Urbana-Champaign. They are each paired with a partner, and I watch as they shove each other in the chest, knee one another in the gut and then punch their […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010