Strategic Communications and Marketing News Bureau

Super small nanoelectrodes can probe microscale environments

CHAMPAIGN, Ill. – Investigating the composition and behavior of microscale environments, including those within living cells, could become easier and more precise with nanoelectrodes being developed at the University of Illinois.

“The individual nanotube-based probes can be used for electrochemical and biochemical sensing,” said Min-Feng Yu, a U. of I. professor of mechanical science and engineering, and a researcher at the university’s Beckman Institute. “The position of the nanoelectrodes can be controlled very accurately.”

To fabricate the nanoelectrodes, Yu and graduate students Kyungsuk Yum, Jie Hu and Han Na Cho begin by attaching a strong, rigid, boron-nitride nanotube to a much larger, conductive probe. The nanotube will form the insulating core of the nanoelectrode.

The researchers then coat the nanotube with a thin film of gold about 10-50 nanometers thick (a nanometer is 1 billionth of a meter.) The gold layer is then coated with an insulating polymer coating about 10 nanometers thick. Lastly, the researchers use a focused ion beam to slice off the end of the nanotube, exposing a conducting ring of gold sandwiched between an insulating core and an insulating outer ring.

The process yields nanoelectrodes with a diameter of 100 nanometers, and a length of up to 30 microns.

Because the nanotube is attached to a much larger probe, the researchers can manipulate the nanotube like a needle. They can control precisely where the nanotube penetrates a cell, for example, and even pinpoint smaller cell structures, such as the nucleus or mitochondrion.

“Nanoelectrodes offer new opportunities for electrochemical sensing in intracellular environments,” said Yu, who will describe the fabrication process and demonstrate the feasibility of nanoelectrodes at the March meeting of the American Physical Society, to be held in Denver, March 5-9. “By functionalizing the active area of the nanoelectrode with an appropriate chemical, we can target the detection of specific chemical species.”

The researchers have demonstrated that their nanoelectrode can sense the chemical environment within a droplet 10 microns in diameter. Their next step is to show that the probe can penetrate the cellular membrane of a living cell, without damaging the cell.

The National Science Foundation and the University of Illinois funded the work.

Editor’s note: To reach Min-Feng Yu, call 217-333-9246; e-mail: mfyu@illinois.edu.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010