Strategic Communications and Marketing News Bureau

Study tracks genomic changes that reinforce darter speciation

CHAMPAIGN, Ill. —  When they share habitat, orangethroat and rainbow darters tend to avoid one another, even though they are closely related and can produce “hybrid” offspring. The males compete with males of their own species and will almost always ignore females of the other species. A new study offers an analysis of the genomic changes that occur when these fish hybridize, offering insight into the gradual accumulation of incompatible traits that likely drives them to diverge.

The researchers report their findings in the journal Molecular Biology and Evolution.

Scientists have spent decades trying to understand the factors that allow closely related organisms to evolve into separate species, said Becky Fuller, a University of Illinois professor of evolution, ecology and behavior who led the research with study lead author Rachel Moran. Now a postdoctoral researcher at the University of Minnesota, Moran conducted the research as a graduate student in Fuller’s lab.

The most obvious driver of speciation is geographic isolation, but other factors also contribute, Fuller said.

“For example, two populations may randomly develop anatomical or physiological differences that prevent them from successfully mating with one another,” she said.

Other behavioral and genomic changes that contribute to species divergence are subtler and more difficult to track, Moran said.

“We were particularly interested in comparing the orangethroat darter with the rainbow darter because the two species co-occur and can form hybrids,” she said. “Interspecies mating is costly for these fish, as it does not result in healthy offspring.”

If the offspring die, they fail to pass their genetic heritage to the next generation. Those lineages with a proclivity for interspecies mating gradually die out.  

“Consequently, when the two species co-occur in the same habitat, they evolve strong preferences to mate with their own species and ignore the other species,” Moran said.

To understand how genomic factors influence this process, the researchers mated orangethroat and rainbow darters in the lab and analyzed the genomes of the few hybrid offspring that survived past hatching. They sequenced the genome of the orangethroat darter and conducted a series of analyses to determine which regions of the two species were misaligned.

“We found that areas of the genome that had a lot of genetic divergence between the two species likely contributed to their reproductive incompatibility,” Moran said. These differences are widespread and include problematic variations in the sequence and order of genes on the chromosomes.

The differences would likely disrupt cell division and could alter gene expression in hybrid offspring, Fuller said.

“This study opens a window on the post-reproductive mechanisms that contribute to the evolution of differing traits in closely related species,” Fuller said.

“How species that exchange genetic material through hybridization are able to coexist and remain distinct from one another has puzzled evolutionary biologists for decades,” Moran said. “The insights we’ve gained from this study have hopefully gotten us a little closer to answering that big question.”

The National Science Foundation, National Institutes of Health and U. of I. School of Integrative Biology supported this research.

Editor’s notes:
To reach Rachel Moran, email rmoran@umn.edu.
To reach Becky Fuller, call 217-333-9065; email rcfuller@illinois.edu.  

The paper “Genomic resources for darters (Percidae: Etheostominae) provide insight into postzygotic barriers implicated in speciation” is available online and from the U. of I. News Bureau.

DOI: 10.1093/molbev/msz260

Read Next

Arts Photo of a park with letters spelling out "Freedom Square," children playing and various structures in the background.

Architecture professors design structures with community organizations for Chicago design festival

CHAMPAIGN, Ill. — The Chicago Sukkah Design Festival is an architectural design festival in the Chicago neighborhood of North Lawndale that brings together architects and community organizations to create gathering spaces to connect residents. University of Illinois Urbana-Champaign architecture professors participating in this year’s festival built a bicycle kiosk and a pop-up theater, which will […]

Engineering Physical Sciences Science and Technology An artist's rendering of a variety of nanoparticle shapes

Atom-scale stencil patterns help nanoparticles take new shapes and learn new tricks

CHAMPAIGN, Ill. — Inspired by an artist’s stencils, researchers have developed atomic-level precision patterning on nanoparticle surfaces, allowing them to “paint” gold nanoparticles with polymers to give them an array of new shapes and functions. The “patchy nanoparticles” developed by University of Illinois Urbana-Champaign researchers and collaborators at the University of Michigan and Penn State […]

Announcements Photo of the researcher

Illinois chemist named 2025 Packard Fellow

Benjamin Snyder, a professor of chemistry at the University of Illinois at Urbana-Champaign, has been named a 2025 Packard Fellow by the David and Lucile Packard Foundation. Photo by Holly Birch Photography

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010