Strategic Communications and Marketing News Bureau

Study suggests commercial bumble bee industry amplified a fungal pathogen of bees

CHAMPAIGN, Ill. — Scientists hoping to explain widespread declines in wild bumble bee populations have conducted the first long-term genetic study of Nosema bombi, a key fungal pathogen of honey bees and bumble bees.

Their study, reported in the Proceedings of the National Academy of Sciences, found that N. bombi was present in the U.S. as early as 1980, well before several species of wild bumble bees started to go missing across the country. The study also found that N. bombi infections in large-scale commercial bumble bee pollination operations coincided with infections and declines in wild bumble bees.

Several species of bumble bee, including Bombus occidentalis, pictured, are experiencing steep population declines.

“We used molecular techniques to screen thousands of bumble bees to track Nosema infections before and after the bees began to decline,” said University of Illinois entomology professor Sydney Cameron, who led the new research. “We wanted to test the idea floating about for a couple of decades that Nosema bombi prevalence in declining populations is connected with commercial production of bumble bees for pollination.”

The study included an analysis of DNA sequence variation in N. bombi over time and in different geographical locations. For historical evidence of infection, the team turned to bee specimens in natural history collections in North America and Europe.

“Our results support the hypothesis that Nosema is a key player in U.S. bumble bee declines,” Cameron said. “They also indicate a temporal connection between historical infections in wild bumble bee populations and the late 1990s Nosema-induced collapse of commercial production of Bombus occidentalis in North America.”

The researchers found parallels between the use of bumble bees to pollinate greenhouse tomatoes in the Pacific West and Eastern Canada and declines in wild bumble bee species that inhabit those same regions. The N. bombi-related declines in wild bees occurred shortly after many commercial bumble bee operations collapsed as a result of N. bombi infections, Cameron said.

“These associations support the hypothesis that Nosema escaped into wild populations from heavily infected commercial colonies, at least during the earlier years of bumble bee domestication in the U.S.,” she said.

While the new study is not a definitive explanation of the widespread bumble bee losses, which are likely the result of many factors, Cameron said, it challenges a popular hypothesis about the sudden declines of wild bumblebees in the early 1990s. That hypothesis – that a newly arrived N. bombi strain from Europe caused the bumble bee declines – was an educated guess, since wild bees and commercial bees suffered devastating losses linked to N. bombi infections at about the same time, in the early 1990s, Cameron said.

“But we found low genetic diversity and very few genetic differences between European and U.S. Nosema strains,” she said. “And we found no evidence to support the arrival of an unusual strain of N. bombi in North America in the 1990s.”

The coincidence of N. bombi infections and losses of bumblebees in wild and commercial populations suggests the fungus is a key player in bumble bee declines, Cameron said. “But we still don’t know whether the fungus is becoming more virulent or the bumble bees – already stressed from habitat loss and degradation and other infections – are becoming more susceptible to Nosema.”

The National Institute of Food and Agriculture and the United States Department of Agriculture supported this research. 

Editor’s notes:

To reach Sydney Cameron, call 217-333-2340; email sacamero@illinois.edu.

The paper “Test of the invasive pathogen hypothesis of bumble bee decline in North America” is available online or from the U. of I. News Bureau.  

 

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010