Strategic Communications and Marketing News Bureau

Study shows how bacteria guide electron flow for efficient energy generation

CHAMPAIGN, Ill. — Biochemists at the University of Illinois have isolated a protein supercomplex from a bacterial membrane that, like a battery, generates a voltage across the bacterial membrane. The voltage is used to make ATP, a key energy currency of life.

The new findings, reported in the journal Nature, will inform future efforts to obtain the atomic structures of large membrane protein supercomplexes.

“With billions of years of evolutionary experience, bacteria are adept at surviving in changing environments,” said Robert Gennis, a University of Illinois professor emeritus of biochemistry who led the new research with biochemistry professor Emad Tajkhorshid. “Most have the ability to modify, replace or combine molecular tools to suit the new demands – sometimes within a single cell’s lifetime,” Gennis said. These tools include enzymes, which catalyze chemical reactions to perform specific tasks.

The energy required by the bacterium is obtained by transporting electrons from high energy food molecules to oxygen, similar to what occurs in plant or animal cells, Gennis said. Electrons pass from one enzyme to another until finally reaching oxygen.

Typically, an enzyme passes an electron on during a random collision with another enzyme. The researchers showed that in some conditions, nature eliminates the need for random collisions by sticking the enzymes together to form a “supercomplex.” Each part of the supercomplex can generate a voltage, but all parts must function in sequence, Gennis said. 

“It makes sense that they will function as a single unit to make sure the electron transport is rapid and the electrons end up where they belong,” he said. “Supercomplexes are probably important in all electron transport chains, but in most cases, attempts to isolate them fail because they fall apart. We were lucky to be studying an organism called a Flavobacterium, in which the supercomplex is stable.” 

U. of I. alumna Padmaja Venkatakrishnan, who initiated the research, is now a postdoctoral researcher at the University of California, Davis.

U. of I. alumna Padmaja Venkatakrishnan, who initiated the research, is now a postdoctoral researcher at the University of California, Davis.

Rather than relying on detergents to extract the proteins from the membrane, as is typically done in such experiments, the team tried an industrial polymer – a kind that plastics are made from. Using this polymer, they extracted and isolated the supercomplex in a single, rapid step. The process embedded the supercomplex in a small disc of membrane shaped like a coin.

With the help of their collaborators at the University of Toronto and the New York Structural Biology Center, the team used cryo-electron microscopy to determine the configuration of the supercomplex components. 

“Evolution has resulted in a very efficient ‘nano-machine’ that is also beautiful to look at. Seeing how this works gives one a great appreciation of nature and is one of the joys of doing science,” Gennis said.

The National Institutes of Health, National Science Foundation and Canadian Institutes of Health Research supported this research.

Editor’s notes:
To reach Robert Gennis, call 217-333-9075; email r-gennis@illinois.edu.
The paper “Structure of the alternative complex III in a supercomplex with cytochrome oxidase” is available online and from the U. of I. News Bureau.
DOI: 10.1038/s41586-018-0061-y

Read Next

Campus news

Awards honor excellence in instruction

CHAMPAIGN, Ill. — The University of Illinois Urbana-Champaign each year presents Campus Awards for Excellence in Instruction to exceptional faculty and staff members, graduate teaching assistants and advisors campuswide. This year’s recipients are being honored at a ceremony on April 15.  Awardees are cited for sustained excellence and innovation in undergraduate and graduate teaching, undergraduate […]

Campus news

Sixteen employees honored with 2025 Chancellor’s Staff Excellence Award

CHAMPAIGN, Ill. — Sixteen academic professionals and civil service staff members have received the Chancellor’s Staff Excellence Award recognizing exceptional performance at the University of Illinois Urbana-Champaign. A CSEA committee recommends finalists, who are approved by Illinois Chancellor Robert Jones. Each awardee receives $1,500 and a commemorative award. Two staff members received awards in each […]

Engineering Life sciences Science and technology Portrait of Yong-Su Jin in the lab wearing a white lab coat and holding two flasks.

Study: Microalgae and bacteria team up to convert CO2 into useful products

CHAMPAIGN, Ill. — Scientists have spent decades genetically modifying the bacterium Escherichia coli and other microbes to convert carbon dioxide into useful biological products. Most methods require additional carbon sources, however, adding to the cost. A new study overcomes this limitation by combining the photosynthetic finesse of a single-celled algae with the production capabilities of […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010