Strategic Communications and Marketing News Bureau

Study identifies key regulator of cell differentiation

CHAMPAIGN, Ill. — Embryonic stem cells and other pluripotent cells divide rapidly and have the capacity to become nearly any cell type in the body. Scientists have long sought to understand the signals that prompt stem cells to switch off pluripotency and adopt their final functional state.

In a study published in the Proceedings of the National Academy of Sciences, researchers report that they have identified a key regulator of this process. They discovered that a molecule known as BEND3 shuts down expression of hundreds of genes associated with differentiation, maintaining the cell’s stem cell-like status. Only when BEND3 is downregulated can cells adopt their final form and function. Once they differentiate, they usually stop actively proliferating.

The findings are relevant to understanding normal development and also may be useful in cancer research, said University of Illinois Urbana-Champaign cell and developmental biology professor and department head Supriya Prasanth, who led the research.

“In most cancers, cells are going through this rampant proliferation because cell-cycle regulators are not functioning properly,” she said. “The prognosis of how cancer cells will respond to treatment often relates to its status of differentiation. The more differentiated a tumor is, the better the prognosis.”

Stem cells have the capacity to repopulate a cancer tumor after it has shrunk during treatment, Prasanth said. Finding a molecular switch that will shift cancer cells away from proliferation and toward differentiation could aid in cancer treatment.

Prasanth’s laboratory focuses on cell cycle regulators. Her early studies identified BEND3 as a potentially important player in the system. Her team found that when BEND3 bound to strategic locales along the chromosome, it reduced or blocked the expression of dozens of genes. When BEND3 was removed, gene expression rebounded.

“When you do these gene-expression studies, you can see hundreds of genes go up, hundreds down,” Prasanth said. “But what does it really mean?”

In the new work, she and her colleagues found that many of the genes repressed by BEND3 promote cell differentiation. Illinois graduate students Fredy Kurniawan and Neha Chetlangia spearheaded the work with postdoctoral researcher Mohammad Kamran, in collaboration with the laboratory of U. of I. cell and developmental biology professor Kannanganattu Prasanth and Mirit Aladjem, a senior investigator at the National Institutes of Health’s National Cancer Institute.

“The binding of BEND3 to these genes blocks their expression, preventing the cells from entering a differentiated state,” Supriya Prasanth said. “And the moment you remove that control, the cells are now moving toward the differentiation pathway.”

BEND3 is not the only regulator of the cell-differentiation pathway; it binds to and interacts with many other molecular regulators of this process, Supriya Prasanth said. But its presence or absence appears critical to determining a cell’s fate, making it an attractive target for potential medical interventions when the process goes awry.

In an accompanying paper published in the journal Genes and Development, the Supriya Prasanth lab and collaborators at the Memorial Sloan Kettering Cancer Center provided structural insights into BEND3-mediated gene regulation.

The National Institutes of Health, the National Science Foundation and the Cancer Center at Illinois supported this research.

Editor’s notes

To reach Supriya Prasanth, email supriyap@illinois.edu.

The paper “BEND3 safeguards pluripotency by repressing differentiation-associated genes” is available online or by contacting PNASnews@nas.edu.

DOI: 10.1073/pnas.2107406119

 

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010