Strategic Communications and Marketing News Bureau

Study identifies chemical in diet that determines a honey bee’s caste

CHAMPAIGN, Ill. — A closer look at how honey bee colonies determine which larvae will serve as workers and which will become queens reveals that a plant chemical, p-coumaric acid, plays a key role in the bees’ developmental fate.

The study, reported in the journal Science Advances, shows that broad developmental changes occur when honey bee larvae – those fated to be workers – are switched from eating royal jelly (a glandular secretion) to a diet of jelly that includes honey and beebread (a type of processed pollen).

Beebread and honey contain p-coumaric acid, but royal jelly does not. Queens feed exclusively on royal jelly. Worker bees known as nurses feed the larvae according to the needs of the hive.

Experiments revealed that ingesting p-coumaric acid pushes the honey bee larvae down a different developmental pathway from those fed only royal jelly. Some genes, about a third of the honey bee genome, are upregulated and another third are downregulated, changing the landscape of proteins available to help fight disease or develop the bees’ reproductive parts.

“Consuming the phytochemical p-coumaric acid, which is ubiquitous in beebread and honey, alters the expression of a whole suite of genes involved in caste determination,” said University of Illinois entomology professor and department head May Berenbaum, who conducted the study with research scientist Wenfu Mao and cell and developmental biology professor Mary Schuler. “For years, people have wondered what components in royal jelly lead to queen development, but what might be more important is what isn’t in royal jelly – plant chemicals that can interfere with development.”

“While previous molecular studies have provided simple snapshots of the gene transcript variations that are associated with the exposure of insects to natural and synthetic chemicals, the genomics approaches used in this study offer a significantly more complex perspective on the biochemical and physiological processes occurring in plant-insect interactions,” Schuler said.

The USDA Agricultural and Food Research Initiative supported this research.

Editor’s notes:

To reach May Berenbaum, email maybe@illinois.edu.

To reach Mary Schuler, call 217-333-8784; email maryschu@illinois.edu

The paper “A dietary phytochemical alters caste determination gene expression in honey bees” is available from scipak@aaas.org.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010