Strategic Communications and Marketing News Bureau

Study: Gene regulation underlies the evolution of social complexity in bees

CHAMPAIGN, Ill. — Explaining the evolution of insect society, with sterile society members displaying extreme levels of altruism, has long been a major scientific challenge, dating back to Charles Darwin’s day. A new genomic study of 10 species of bees representing a spectrum of social living – from solitary bees to those in complex, highly social colonies – offers new insights into the genetic changes that accompany the evolution of bee societies.

The new findings are reported in the journal Science.

A new study offers insights into the genetic changes that accompany social complexity in bees, including honey bees.

A new study offers insights into the genetic changes that accompany social complexity in bees, including honey bees.

By sequencing and comparing the genomes of 10 bee species that vary in social complexity, the researchers made three important discoveries.

 “First, there is no single road map to eusociality – the complex, cooperative social system in which animals behave more like superorganisms than individuals fending for themselves,” said Gene Robinson, a lead on the study who is a professor of entomology and the director of the Carl R. Woese Institute for Genomic Biology at the University of Illinois. “In this study, we found that independent evolutionary transitions in social life have independent genetic underpinnings.”

The second insight involved changes in the evolution of gene regulation: As social complexity increased, so did the speed of changes to parts of the genome involved in regulating gene activity, located in the promoters of the genes, the researchers report.

By contrast, evolution seems to have put the brakes on changes in many parts of the genome that code for the actual proteins, Robinson said. Similarly, there was an increase in DNA methylation as social complexity increased, which also means enhanced gene regulatory capacity, he said.

“It appears from these results that gene networks get more complex as social life gets more complex, with network complexity driving social complexity,” Robinson said.

A third major finding was that increases in social complexity were accompanied by a slowing, or “relaxation,” of changes in the genome associated with natural selection. This effect on some genes may be a result of the buffering effect of living in a complex, interdependent society, where the “collective genome” is less vulnerable to dramatic environmental changes or other external threats, Robinson said.

“These results demonstrate once again that important new insights into evolution can be obtained by using genomes as history books,” Robinson said. “We have now learned what genetic changes have occurred during the evolution of the bees, notable for their elaborate societies and essential pollination services.”

 

Editor’s notes: To reach Gene Robinson, call 217-265-0309; email generobi@illinois.edu.

The paper, “Genome Signatures of Evolutionary Transitions from Solitary to Group Living,” is available online or from the U. of I. News Bureau.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010