Strategic Communications and Marketing News Bureau

Study challenges widely accepted theory of Yellowstone formation

CHAMPAIGN, Ill. — Understanding the complex geological processes that form supervolcanoes could ultimately help geologists determine what triggers their eruptions. A new study using an advanced computer model casts doubt on previously held theories about the Yellowstone supervolcano’s origins, adding to the mystery of Yellowstone’s formation.

“Our model covered the entire history of Yellowstone volcanic activities,” said Lijun Liu, a geology professor at the University of Illinois. Liu’s computer model accounted for the last 40 million years, prior to even the earliest signs of Yellowstone’s volcanism.

Yellowstone is one of the largest remaining active supervolcanoes. True to its name, a supervolcano is capable of erupting on a much larger scale than an ordinary volcano. The origins of Yellowstone are still under much debate. One of the most prevalent views is that Yellowstone’s supervolcano was formed by a vertical column of hot rocks rising from the top of the earth’s core, known as a mantle plume.

“The majority of previous studies have relied on conceptual, idealized models, which are not physically and geologically accurate,” Liu said. Some recent studies reproduced key geophysical factors in a laboratory setting, including a rising plume and a sinking oceanic plate. However, these studies failed to account for the comprehensive set of geological variables that change over time, influencing the volcanic history.

“Our physical model is more sophisticated and realistic than previous studies, because we simultaneously consider many more relevant dynamic processes,” Liu said.

Using the Blue Waters supercomputer at the National Center for Supercomputing Applications at the U. of I., one of the fastest supercomputers in the world, Liu’s team created a computer model that replicated both the plate tectonic history of the surface and the geophysical image of the Earth’s interior. This study is the first to use a high-performance supercomputer to interpret the layers of complicated geophysical data underlying Yellowstone, Liu said.

The main goal of the study was to examine whether the initiation and subsequent development of the Yellowstone volcanic system was driven by a mantle plume. The simulated data showed that the plume was blocked from traveling upward toward the surface by ancient tectonic plates, meaning that the plume could not have played a significant role in forming Yellowstone, Liu said.

The researchers published their findings in the journal Geophysical Research Letters.

The researchers also examined many other factors that could have played a role in forming Yellowstone. These simulations discounted most of the other theories of Yellowstone’s origins, Liu said. As a result, formation of the Yellowstone volcanic system remains mysterious.

Supervolcanoes are hazardous natural phenomena that evoke public concern, partly because their formation is not well understood. While this area of research is still far from predicting eruptions, Liu said, improving the fundamental understanding of the underlying dynamics of supervolcano formation is key to many future applications of relevant geophysical knowledge.

“This research indicates that we need a multidisciplinary approach to understand complicated natural processes like Yellowstone,” Liu said. “I know people like simple models, but the Earth is not simple.”

The National Science Foundation supported this work.

Editor’s notes:

To reach Lijun Liu, call 217-300-0378; email ljliu@illinois.edu.

The paper “The Role of a Mantle Plume in the Formation of Yellowstone Volcanism” is available online and from the News Bureau.

Read Next

Expert viewpoints Journalism lecturer Nancy Averett stands on the outdoor stairs of Gregory Hall on the University of Illinois Urbana-Champaign campus.

How can science literacy help people better understand the news?

In today’s rapidly evolving media landscape, the spread of misinformation and disinformation regarding scientific topics such as natural disasters, vaccines and climate change can pose a risk to public health. Nancy Averett, a University of Illinois Urbana-Champaign lecturer of journalism and expert in science and environmental journalism spoke with News Bureau physical science and media editor Lois Yoksoulian about how science literacy can help the American public make more informed choices.

Social sciences Nick Pitas standing next to a tree in a park with a pavilion in the background.

Research explores Champaign Park District’s relationship with users who are homeless

CHAMPAIGN, Ill. — Members of the Champaign community who were surveyed for a recent research project viewed the Champaign Park District as a stopgap provider of “crisis response” services for people who are homeless. The park district ― which oversees more than 62 parks and 14 recreational facilities ― collaborated on the project, which was […]

Agriculture Researchers in the lab.

How do we address the problem of PFAS in sewage sludge?

Communities and federal agencies are waking up to the dangers of “forever chemicals” in wastewater treatment sludge, which is often sprayed on farm fields as fertilizer. In mid-January, the federal Environmental Protection Agency warned that this practice endangers human health. A month later, Johnson County in northeast Texas declared a state of emergency over the […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010