Strategic Communications and Marketing News Bureau

Structure of protein that forms fibrils in Parkinson’s patients could lead to new diagnostic and treatment options

CHAMPAIGN, Ill. — Chemists have identified the complex chemical structure of the protein that stacks together to form fibrils in the brains of Parkinson’s disease patients. Armed with this knowledge, researchers can identify specific targets for diagnosis and treatment.

University of Illinois chemists, collaborating with peers at the University of Pennsylvania, Vanderbilt University and Queen Mary University of London, detailed their mapped structure of the protein in the journal Nature Structural and Molecular Biology.

In Parkinson’s, the protein alpha-synuclein forms long fibrils that disrupt brain activity. This is similar to the beta-amyloid fibrils that form in Alzheimer’s disease patients. However, while the beta-amyloid structure is known, the alpha-synuclein structure has eluded researchers as a result of its complexity, its insolubility and the difficulty of characterizing one protein within a fibril.

“This is the first structure of the full-length fibril protein, which is now well established to be important for the pathology of Parkinson’s disease,” said study leader Chad Rienstra, a University of Illinois chemistry professor. “Knowing that structure will open up many new areas of investigation for diagnosing and treating Parkinson’s disease.”

The Illinois group used a special type of molecular imaging called magic-angle spinning nuclear magnetic resonance to measure the placement of atoms in six different samples of alpha-synuclein. In each set of samples, they looked at different sets of atoms, then used advanced computational power to put them all together like pieces of a giant jigsaw puzzle.

“We had to find patterns in the data and systematically test all the possibilities for how the protein would fit together,” Rienstra said. “It’s like when you solve a really complex puzzle, you know you have it right at the end because all the pieces fit together. That’s what we got with this structure.”

The group experimentally verified the structure with collaborators by producing the protein in the lab and checking it with various imaging methods to see if it matched the fibrils found in Parkinson’s patients. They also verified it biologically by testing it in cell cultures and seeing that it indeed behaved like the protein found in patients.

“These structures are crucial for understanding the mechanisms for how Parkinson’s disease works,” said Marcus Tuttle, first author of the paper, who worked on the project as a graduate researcher in Rienstra’s group and is now a postdoctoral fellow at Yale University. “Amyloid diseases are incredibly complex systems. What structural features drive pathology? That’s a super interesting question, but until now there’s been no structure. Now there’s a whole avenue where we can start to explore the basic mechanism of how the protein works.”

Rienstra’s group is working with the Michael J. Fox Foundation to identify possible diagnostic agents that could target certain spots on the alpha-synuclein protein and would “light up” in a brain scan, allowing for earlier and more accurate diagnosis.

“We think that the structure that we resolved of alpha-synuclein fibrils will be really significant in the immediate future and has use for diagnosing Parkinson’s in patients before they’re symptomatic,” Rienstra said. “Once people start having symptoms, whether of Alzheimer’s or Parkinson’s, in many ways it’s a little too late to be effective with therapy. But if you catch it early, I think there’s a lot of promise for therapies that are being developed. Those are all relying upon the structures that we’re solving.”

The National Institutes of Health supported this work.

 

 

Editor’s notes: To reach Chad Rienstra, call (217) 244-4655; email rienstra@illinois.edu.

The paper “Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein” is available online or from the News Bureau.

DOI: 10.1038/nsmb.3194

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010