Strategic Communications and Marketing News Bureau

Silver pen has the write stuff for flexible electronics

CHAMPAIGN, Ill. – The pen may have bested the sword long ago, but now it’s challenging wires and soldering irons.

University of Illinois engineers developed a pen with conductive silver ink that can write electric circuits and interconnects directly on paper and other surfaces.

University of Illinois engineers developed a pen with conductive silver ink that can write electric circuits and interconnects directly on paper and other surfaces.

University of Illinois engineers have developed a silver-inked rollerball pen capable of writing electrical circuits and interconnects on paper, wood and other surfaces. The pen is writing whole new chapters in low-cost, flexible and disposable electronics.

Led by Jennifer Lewis, the Hans Thurnauer professor of materials science and engineering at the U. of I., and Jennifer Bernhard, a professor of electrical and computer engineering, the team published its work in the journal Advanced Materials.

“Pen-based printing allows one to construct electronic devices ‘on-the-fly,’ ” said Lewis, the director of the Frederick Seitz Materials Research Laboratory at the U. of I. “This is an important step toward enabling desktop manufacturing (or personal fabrication) using very low cost, ubiquitous printing tools.”

While it looks like a typical silver-colored rollerball pen, this pen’s ink is a solution of real silver. After writing, the liquid in the ink dries to leave conductive silver pathways – in essence, paper-mounted wires. The ink maintains its conductivity through multiple bends and folds of the paper, enabling devices with great flexibility and conformability.

Metallic inks have been used in approaches using inkjet printers to fabricate electronic devices, but the pen offers freedom and flexibility to apply ink directly to paper or other rough surfaces instantly, at low cost and without programming.

“The key advantage of the pen is that the costly printers and printheads typically required for inkjet or other printing approaches are replaced with an inexpensive, hand-held writing tool,” said Lewis, who is also affiliated with the Beckman Institute for Advanced Science and Technology.

 

The ability to create freestyle conductive pathways enables new possibilities in art, disposable electronics and folded three-dimensional devices. For example, the researchers used the silver pen to sketch a copy of the painting “Sae-Han-Do” by Jung Hee Kim, which portrays a house, trees and Chinese text. The ink serves as wiring for an LED mounted on the roof of the house, powered by a five-volt battery connected to the edge of the painting. The researchers also have demonstrated a flexible LED display on paper, conductive text and three-dimensional radio-frequency antennas.

Next, the researchers plan to expand the palette of inks to enable pen-on-paper writing of other electronic and ionically conductive materials.

The U.S. Department of Energy supported this work. Co-authors were graduate student Analisa Russo and postdoctoral researchers Bok Yeop Ahn, Jacob Adams and Eric Duoss.

Editor’s note: To contact Jennifer Lewis, call 217-244-4973; email jalewis@illinois.edu. The paper, “Pen-on-Paper Flexible Electronics,” is available online.

Read Next

Announcements Graphic says: 2025 Highly Cited Researchers. Background is orange with an image of journal articles stacked and open.

Twelve Illinois scientists rank among the world’s most influential

CHAMPAIGN, Ill. — Twelve scientists at the University of Illinois Urbana-Champaign have been named to the 2025 Clarivate Analytics Highly Cited Researchers list. The list recognizes researchers and social scientists who have demonstrated exceptional influence, as reflected through their publication of multiple papers frequently cited by their peers during the last decade. The highly cited […]

Engineering A tilted view of miscellaneous of multicolored used batteries.

Study shows new hope for commercially attractive lithium extraction from spent batteries

A new study shows that lithium — a critical element used in rechargeable batteries and susceptible to supply chain disruption — can be recovered from battery waste using an electrochemically driven recovery process. The method has been tested on commonly used types of lithium-containing batteries and demonstrates economic viability with the potential to simplify operations, minimize costs and increase the sustainability and attractiveness of the recovery process for commercial use.

Health and Medicine Research team in the lab.

Study: A cellular protein, FGD3, boosts breast cancer chemotherapy, immunotherapy

CHAMPAIGN, Ill. — A naturally occurring protein that tends to be expressed at higher levels in breast cancer cells boosts the effectiveness of some anticancer agents, including doxorubicin, one of the most widely used chemotherapies, and a preclinical drug known as ErSO, researchers report. The protein, FGD3, contributes to the rupture of cancer cells disrupted […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010