Strategic Communications and Marketing News Bureau

Self-cooling observed in graphene electronics

CHAMPAIGN, Ill. – With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Led by mechanical science and engineering professor William King and electrical and computer engineering professor Eric Pop, the team will publish its findings in the April 3 advance online edition of the journal Nature Nanotechnology.

The speed and size of computer chips are limited by how much heat they dissipate. All electronics dissipate heat as a result of the electrons in the current colliding with the device material, a phenomenon called resistive heating. This heating outweighs other smaller thermoelectric effects that can locally cool a device. Computers with silicon chips use fans or flowing water to cool the transistors, a process that consumes much of the energy required to power a device.

Future computer chips made out of graphene – carbon sheets 1 atom thick – could be faster than silicon chips and operate at lower power. However, a thorough understanding of heat generation and distribution in graphene devices has eluded researchers because of the tiny dimensions involved.

The Illinois team used an atomic force microscope tip as a temperature probe to make the first nanometer-scale temperature measurements of a working graphene transistor. The measurements revealed surprising temperature phenomena at the points where the graphene transistor touches the metal connections. They found that thermoelectric cooling effects can be stronger at graphene contacts than resistive heating, actually lowering the temperature of the transistor.

“In silicon and most materials, the electronic heating is much larger than the self-cooling,” King said. “However, we found that in these graphene transistors, there are regions where the thermoelectric cooling can be larger than the resistive heating, which allows these devices to cool themselves. This self-cooling has not previously been seen for graphene devices.”

This self-cooling effect means that graphene-based electronics could require little or no cooling, begetting an even greater energy efficiency and increasing graphene’s attractiveness as a silicon replacement.

“Graphene electronics are still in their infancy; however, our measurements and simulations project that thermoelectric effects will become enhanced as graphene transistor technology and contacts improve ” said Pop, who is also affiliated with the Beckman Institute for Advanced Science, and the Micro and Nanotechnology Laboratory at the U. of I.

Next, the researchers plan to use the AFM temperature probe to study heating and cooling in carbon nanotubes and other nanomaterials.

King also is affiliated with the department of materials science and engineering, the Frederick Seitz Materials Research Laboratory, the Beckman Institute, and the Micro and Nanotechnology Laboratory.

The Air Force Office of Scientific Research and the Office of Naval Research supported this work.

Co-authors of the paper included graduate student Kyle Grosse, undergraduate Feifei Lian and postdoctoral researcher Myung-Ho Bae.

Editor’s note: To contact William King, call 217-244-3864; email wpk@illinois.edu. To contact Eric Pop, 217-244-2070; epop@illinois.edu.

Read Next

Behind the scenes Photo of a group of dancers in costume reflected in a dressing room mirror.

Taking flight on a New York City stage

CHAMPAIGN, Ill. — It’s a Saturday afternoon and I’m waiting in a cramped hallway beneath The Joyce Theater stage in Chelsea, Manhattan. My palms are sweaty, and I feel anxious as I attempt to take my mind off the looming event, my New York City debut. The audience is filled with my peers, teachers, family […]

Announcements A collage of four portraits

Four Illinois faculty members elected to American Academy of Arts and Sciences

CHAMPAIGN, Ill. — Four faculty members from the University of Illinois Urbana-Champaign have been newly elected as members of the American Academy of Arts and Sciences, one of the oldest honorary societies in the United States. Materials science professor Paul Braun, history professor Antoinette Burton, physics professor Aida El-Khadra and chemistry professor Jonathan Sweedler are […]

Education Paul Bruno wearing a dark suit standing in front of an upward staircase.

Computer science teachers may be better qualified than their peers

CHAMPAIGN, Ill. —  Educators and researchers have had longstanding concerns about the quality of computer science instruction in U.S. schools. A recent study exploring student learning and computer science teachers’ qualifications in one state suggests that these teachers may be better qualified than those teaching other subjects, even within the same schools. Paul Bruno, a […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010