Strategic Communications and Marketing News Bureau

Sediment samples suggest how plants would fare in hotter, drier future

CHAMPAIGN, Ill. – Sediment samples dating back thousands of years and taken from under the deep water of West Olaf Lake in Minnesota have revealed an unexpected climate indicator that can be factored into future projections.

In the Jan. 13 issue of the Proceedings of the National Academy of Sciences, scientists at the University of Illinois at Urbana-Champaign report that native C4 plants did not fare well during prolonged periods of severe drought that occurred in the middle Holocene (4,000 to 8,000 years ago).

C4 plants, so designated because of their biochemical pathway of photosynthesis, are generally expected to do well in warmer, drier climates driven by rising levels of carbon dioxide. Elevated carbon dioxide concentrations alone should favor C3 plants, which use another photosynthesis pathway. While the middle Holocene had much lower levels of carbon dioxide, the general climate conditions of that time provide a good model for study, said Feng Sheng Hu, a professor in the plant biology and geology departments at Illinois.

The sediment from West Olaf Lake, which contains residue of plant life, indicates that weedy C3 plants such as Ambrosia (ragweed) adapted well during severe-drought episodes because of their ability to exploit very limited amounts of water available during the growing season, said David M. Nelson, lead author of the paper and a doctoral student in ecology and evolutionary biology working with Hu.

The findings suggest that even C4 plants could face disastrous consequences during long periods of drought, despite the fact that they use water more efficiently than C3 plants, Nelson said. Barren areas unsuitable for agriculture may be much more extensive in the Midwest under warmer, drier conditions predicted for the future, he said.

“Previous studies of past grassland change have been hampered by the fact that pollen grains of grasses cannot be separated into species, making it difficult to understand climate adaptations of C3 and C4 plants during the middle Holocene,” Hu said. “This study offers new details about grassland responses to long periods of severe drought.”

The researchers analyzed and compared sediment from West Olaf Lake with samples from Steel Lake, about 75 miles northeast in Hubbard County. Today West Olaf Lake is along the border of the Great Plains and the more hilly deciduous forest of west central Minnesota. Steel Lake is in more geographically diverse terrain that features a dense coniferous forest that was less susceptible to long-term drought.

The middle Holocene C3 and C4 estimates of the two lakes were based on an analysis of carbon isotopes in charcoal particles produced by fires and well preserved in the stratified layers of sediment. Because of the presence of aragonite, a carbonate mineral, at West Olaf Lake, climate data were extracted by using X-ray diffraction. Climate conditions at Steel Lake came from oxygen-18 isotope levels.

“These analyses gave a picture of precipitation and aridity over time,” Nelson said. “At West Olaf Lake, during the most severe, long droughts in the early years of the middle Holocene, C4 plants were low in abundance. Only as temperatures cooled and moisture availability rose later in the middle Holocene did C4 plants increase in abundance.”

The West Olaf Lake area was rich in weeds such as Ambrosia during the Holocene’s drier middle years. During the period’s early years, severe droughts limited plant productivity, reducing the accumulation of flammable fuels. During the milder, wetter later years of the period, rising C4 plant productivity coincided with an increase of fires.

At Steel Lake, C4 plants were abundant in the middle Holocene. Researchers did not see the inverse relationship between C4 plants and drought, which were not as severe.

 

Other contributing authors on the paper were Jian Tian, a doctoral student in geology at Illinois, Ivanka Stefanova of the University of Minnesota and Thomas A. Brown of the Lawrence Livermore National Laboratory in California.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010