Strategic Communications and Marketing News Bureau

Scientists fool bacteria into killing themselves to survive

Researcher Gerard Wong led the team of researchers who found a way to fool a bacteria's evolutionary machinery into programming its own death.

Researcher Gerard Wong led the team of researchers who found a way to fool a bacteria’s evolutionary machinery into programming its own death.

CHAMPAIGN, Ill. – Like firemen fighting fire with fire, researchers at the University of Illinois and the University of Massachusetts at Amherst have found a way to fool a bacteria’s evolutionary machinery into programming its own death.

“The basic idea is for an antimicrobial to target something in a bacteria that, in order to gain immunity, would require the bacteria to kill itself through a suicide mutation,” said Gerard Wong, a professor of materials science and engineering, of physics, and of bioengineering at the U. of I.

Wong is corresponding author of a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be posted this week on the journal’s Web site.

The researchers show that a synthetic “hole punching” antimicrobial depends on the presence of phosphoethanolamine, a cone-shaped lipid found in high concentrations within Gram-negative bacterial membranes. Although PE lipids are commandeered to kill the bacteria, without the lipids the bacteria would die, also.

“It’s a Catch-22,” Wong said. “Some mutations bacteria can tolerate, and some mutations they cannot tolerate. In this case, the bacteria would have to go through a mutation that would kill it, in order to be immune to these antimicrobials.”

In their work, the researchers compared the survival of the bacterium Escherichia coli with that of a mutant strain of E. coli, which lacked PE lipids in its membrane. The fragile PE-deficient mutant strain out-survived the normal, healthy bacteria, when exposed to a “hole punching” synthetic antibiotic.

However, the opposite was true when both strains were exposed to tobramycin, a conventional metabolic antibiotic that targets the bacterial ribosomal machinery rather than the membrane.

The researchers first reported on compounds that functioned as molecular “hole punchers” last year in the Journal of the American Chemical Society. Their latest work further elucidates the “hole punching” mechanism.

“The antimicrobial re-organizes PE lipids into holes in the membrane,” said Wong, who also is a researcher at the university’s Beckman Institute. “The perforated membranes leak, and the bacteria die.”

Finding new ways to treat emerging pathogens that are more and more resistant to the best antibiotics will be increasingly important in the future, Wong said. “Now that we more fully understand how our molecular ‘hole punchers’ work, we can look for similar ways to make antimicrobials that bacteria cannot evolve immunity to.”

With Wong, the paper’s co-authors include U. of I. graduate student and lead author Lihua Yang, materials science and engineering professor Dallas R. Trinkle, microbiology professor John E. Cronan Jr., and University of Massachusetts polymer science and engineering professor Gregory N. Tew, who earned a doctorate from Illinois.

The work was funded by the National Science Foundation, the National Institutes of Health and the Office of Naval Research.

 

Editor’s note: To reach Gerard Wong, call 217-265-5254; e-mail: gclwong@illinois.edu.

Read Next

Agriculture Graduate student Andrea Jimena Valdés-Alvarado, left, and food science professor Elvira Gonzalez de Mejia standing in the Edward R. Madigan Laboratory holding samples of the legume pulses they used in the study.

Fermenting legume pulses boosts their antidiabetic, antioxidant properties

CHAMPAIGN, Ill. — Food scientists at the University of Illinois Urbana-Champaign identified the optimal fermentation conditions for pulses ― the dried edible seeds of legumes ― that increased their antioxidant and antidiabetic properties and their soluble protein content. Using the bacteria Lactiplantibacillus plantarum 299v as the microorganism, the team fermented pulses obtained from varying concentrations […]

Expert viewpoints Ukraine’s daring drone attack deep within Russia is significant but not war-redefining, and may hinder U.S. efforts to end the war, says University of Illinois Urbana-Champaign political science professor and international relations expert Nicholas Grossman.

Does Ukraine drone attack inside Russia augur new era of asymmetric warfare?

Champaign, Ill. — University of Illinois Urbana-Champaign political science professor Nicholas Grossman is the author of “Drones and Terrorism: Asymmetric Warfare and the Threat to Global Security” and specializes in international relations. Grossman spoke with News Bureau business and law editor Phil Ciciora about “Operation Spiderweb,” Ukraine’s expertly plotted drone attack inside the Russian mainland. […]

Behind the scenes Photo of a man with his leg lifted and his boot in the foreground, while another man in the foreground reacts.

Staging a fight

CHAMPAIGN, Ill. — A group of theatre students is gathered in a rehearsal room at Krannert Center for the Performing Arts at the University of Illinois Urbana-Champaign. They are each paired with a partner, and I watch as they shove each other in the chest, knee one another in the gut and then punch their […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010