Strategic Communications and Marketing News Bureau

Scientists discover spring-loaded mechanism in unusual species of trap-jaw ant

. U. of I. animal biology professor Andrew Suarez and his colleagues describe the unusual mechanics that enable Myrmoteras ant jaws to snap closed in half a millisecond.

U. of I. animal biology professor Andrew Suarez and his colleagues describe the unusual mechanics that enable Myrmoteras ant jaws to snap closed in half a millisecond.

CHAMPAIGN, Ill. — Researchers reveal how a group of trap-jaw ants can snap their jaws shut at speeds of up to 50 miles per hour – just fast enough to capture their elusive prey.

They report their findings in the Journal of Experimental Biology.

The ants belong to the genus Myrmoteras, and are one of four groups of ants that have independently evolved the ability to quickly snap their powerful jaws shut to capture speedy prey. They feed primarily on springtails, tiny arthropods that fling themselves away from danger when they detect a threat. Until they encounter their prey, Myrmoteras ants hold their jaws open at a 280-degree angle. Latched in this position, the jaws store elastic energy which, when released, snaps the jaws shut in a fraction of a second.

“These ants are rarely seen in nature and almost impossible to keep alive in the lab,” said University of Illinois animal biology professor Andrew Suarez, who led the study with former graduate student Frederick Larabee, now a postdoctoral researcher at the Smithsonian Institution’s National Museum of Natural History.

“Each group of trap-jaw ants has a different way to store and release energy. Working with this genus has been sort of a holy grail for us,” Suarez said.

Myrmoteras jaws can snap shut in half a millisecond, much faster than the human eye can perceive, the researchers report. Such speed cannot be attained by muscle strength alone, Larabee said.

However, this is considerably slower than the jaw strikes of other known trap-jaw ants. The mandibles of the distantly related Odontomachus ants are twice as fast, making their strikes among the fastest animal movements ever recorded, he said.

The jaws of the Myrmoteras ants are only as fast as they need to be, Larabee said.

“They just need to be faster than the critters they’re trying to eat, and their jaws are plenty fast for capturing springtails,” he said.

To visualize the ants’ jaws, Larabee used a microscope and microcomputed tomography, which exposes tiny specimens to X-rays to discern their internal structures. His observations allowed him to determine how the jaws likely work.

Larabee detected a feature of the ant’s mandible that allow it to lock its jaws open. Just before a strike, a lobe on the back of the ant’s head compresses. A trigger muscle releases the jaws, executing the strike.

“What’s interesting is that the arrangement of the muscles and how the jaws are locked open are completely different from other trap-jaw ants that have been studied,” Larabee said. “It seems like it’s a completely unique evolution of this system.”

“Studying these ants gives us insight into solutions for real-world issues related to energy storage and high-speed systems,” Suarez said.

The National Science Foundation, Peter Buck Fellowship and the National Geographic Society supported this research.

Editor’s notes:                                                                                       
To reach Andrew Suarez, call 217-390-1407; email suarez2@illinois.edu.
The paper “Performance, morphology and control of power-amplified mandibles in the trap-jaw ant Myrmoteras” is available from the U. of I. News Bureau.
DOI: 10.1242/jeb.156513

Read Next

Uncategorized Portrait photos of, from left, Carl Bernacchi, Stephen Long and Donald Ort

Review: Heat-resilient crops are within reach — given enough time and money

CHAMPAIGN, Ill. — Laboratory and field experiments have repeatedly shown that modifying the process of photosynthesis or the physical characteristics of plants can make crops more resilient to hotter temperatures. Scientists can now alter the abundance or orientation of leaves, change leaf chemistry to improve heat tolerance and adjust key steps in the process of […]

Arts Diptych image of the book cover of "Natural Attachments" and a portrait of Pollyanna Rhee standing in front of greenery.

Book explores how ‘domestication’ of environmentalism limits who it protects

CHAMPAIGN, Ill. — The response to a 1969 oil spill off the coast of Santa Barbara, California, reveals how the modern environmental movement has been used to protect the interests of private homeowners, said a University of Illinois Urbana-Champaign researcher. Landscape architecture professor Pollyanna Rhee chronicled how affluent homeowners use what she calls “ownership environmentalism” […]

Agriculture Graduate student Andrea Jimena Valdés-Alvarado, left, and food science professor Elvira Gonzalez de Mejia standing in the Edward R. Madigan Laboratory holding samples of the legume pulses they used in the study.

Fermenting legume pulses boosts their antidiabetic, antioxidant properties

CHAMPAIGN, Ill. — Food scientists at the University of Illinois Urbana-Champaign identified the optimal fermentation conditions for pulses ― the dried edible seeds of legumes ― that increased their antioxidant and antidiabetic properties and their soluble protein content. Using the bacteria Lactiplantibacillus plantarum 299v as the microorganism, the team fermented pulses obtained from varying concentrations […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010