Strategic Communications and Marketing News Bureau

Scientists decipher mechanism behind antimicrobial ‘hole punchers’

The rapid development of bacterial resistance to conventional antibiotics has become a major public health concern. Gerard Wong, an Illinois professor, and colleagues at the University of Massachusetts have made a discovery that could shorten the road to new and more potent antibiotics.

The rapid development of bacterial resistance to conventional antibiotics has become a major public health concern. Gerard Wong, an Illinois professor, and colleagues at the University of Massachusetts have made a discovery that could shorten the road to new and more potent antibiotics.

CHAMPAIGN, Ill. – In the battle against bacteria, researchers have scored a direct hit. They have made a discovery that could shorten the road to new and more potent antibiotics.

The rapid development of bacterial resistance to conventional antibiotics (such as penicillin or vancomycin) has become a major public health concern. Because resistant strains of bacteria can arise faster than drug companies can create antibiotics, understanding how these molecules function could help companies narrow their focus on potential antibiotics and bring them to market sooner.

As reported in a paper accepted for publication in the Journal of the American Chemical Society and posted on its Web site, researchers have now deciphered the molecular mechanism behind selective antimicrobial activity for a prototypical class of synthetic compounds.

The compounds, which mimic antimicrobial peptides found in biological immune systems, “function as molecular ‘hole punchers,’ punching holes in the membranes of bacteria,” said Gerard Wong, a professor of materials science and engineering, physics, and bioengineering at the U. of I., and a corresponding author of the paper. “It’s a little like shooting them with a hail of nanometer-sized bullets – the perforated membranes leak and the bacteria consequently die.”

The researchers also determined why some compounds punch holes only in bacteria, while others kill everything within reach, including human cells.

“We can use this as a kind of Rosetta stone to decipher the mechanisms of much more complicated antimicrobial molecules,” said Wong, who also is a researcher at the university’s Beckman Institute.

“If we can understand the design rules of how these molecules work, then we can assemble an arsenal of killer molecules with small variations, and no longer worry about antimicrobial resistance.”

In a collaboration between the U. of I. and the University of Massachusetts at Amherst, the researchers first synthesized a prototypical class of antimicrobial compounds, then used synchrotron small-angle X-ray scattering to examine the structures made by the synthetic compounds and cell membranes.

Composed of variously shaped lipids, including some that resemble traffic cones, the cell membrane regulates the passage of materials in and out of the cell. In the presence of the researchers’ antimicrobial molecules, the cone-shaped lipids gather together and curl into barrel-shaped openings that puncture the membrane. Cell death soon follows.

The effectiveness of an antimicrobial molecule depends on both the concentration of cone-shaped lipids in the cell membrane, and on the shape of the antimicrobial molecule, Wong said. For example, by slightly changing their synthetic molecule’s length, the researchers created antimicrobial molecules that would either kill nothing, kill only bacteria, or kill everything within reach.

“By understanding how these molecules kill bacteria, and how we can prevent them from harming human cells, we can provide a more direct and rational route for the design of future antibiotics,” Wong said.

This work was supported by the National Science Foundation, the National Institutes of Health and the Office of Naval Research.

Editor’s note: To reach Gerard Wong, call 217-265-5254; e-mail: gclwong@illinois.edu.

To view or subscribe to the RSS feed for Science News at Illinois, please go to: http://illinois.edu/lb/rss/608/text.xml.

Read Next

Expert viewpoints Photo of John Schwenkler surrounded by screens showing digital data.

How can digital technology contribute to human flourishing?

University of Illinois Urbana-Champaign philosophy professor John Schwenkler is the director of the new Illinois Forum on Human Flourishing in a Digital Age, housed in the philosophy department. The forum — which offers an undergraduate course, graduate fellowships, a speaker series and seminars — aims to examine the challenges and opportunities of living in a […]

Expert viewpoints Photo of Robert M. Lawless

What effect will a weakened consumer watchdog agency have on borrowers, bankruptcies?

Champaign, Ill. — University of Illinois Urbana-Champaign law professor Robert M. Lawless is a leading consumer credit and bankruptcy expert. Lawless, the Max L. Rowe Professor of Law and co-director of the Illinois Program on Law, Behavior and Social Science, spoke with News Bureau business and law editor Phil Ciciora about the Trump administration’s abrupt […]

Business Photo of Emily E. LB. Twarog, a professor of labor and employment relations and the co-director of the Regina V. Polk Women’s Labor Leadership Conference.

What are the historical precedents for consumer activism, economic blackouts?

Champaign, Ill. — The Feb. 28 “economic blackout” — in which consumers were encouraged not to spend any money for 24 hours — may have gone viral on social media, but what effect did it have in real life? Emily E. LB. Twarog is a professor of labor and employment relations and the co-director of […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010