Strategic Communications and Marketing News Bureau

Scientists aim to put a pox on dog cancer

CHAMPAIGN, lll. – Researchers report that myxoma – a pox virus that afflicts rabbits but not humans, dogs or any other vertebrates so far studied – infects several different types of canine cancer cells in cell culture while sparing healthy cells. The study adds to the evidence that viruses or modified viruses will emerge as relatively benign cancer treatments to complement or replace standard cancer therapies.

The new study, reported in the American Journal of Veterinary Research, is unique in that it focused on spontaneously occurring cancers in dogs. This allowed the researchers to avoid a common practice: testing viral therapies on mice or rats with induced human cancers. Such animals must be immunosuppressed to prevent their immune systems from rejecting the foreign tissue, complicating the results.

Treating cancers with viruses could offer several advantages over standard cancer therapies, said University of Illinois veterinarian and pathobiology professor Amy MacNeill, who led the new study. Many cancers have impaired anti-viral defenses, which allow viruses to target tumors while sparing healthy cells. And under the right conditions, infection with an oncolytic (cancer-killing) virus exterminates cancer cells and elicits an anti-cancer immune response without spurring a harmful inflammatory response, she said. Chemotherapy and radiation kill healthy cells along with cancer cells and radiation can cause abrupt cell death that spurs inflammation and pain, she said.

“Ideally, what would happen is the virus would get into a few cancer cells, cause cell death and then spread to the other tumor cells nearby,” she said.

Recent studies have shown that oncolytic viral therapies can be used successfully in conjunction with traditional approaches, MacNeill said.

“There was a study in cats where they removed the tumor surgically and then they put a viral therapy in the area where the tumor had been removed,” she said. The animals that received the viral therapy had significantly less regrowth of the cancer than those that weren’t exposed to the virus after surgery.

“Other studies (1, 2, 3, 4) have shown that once you’ve eliminated a cancer with an oncolytic virus, if you re-challenge that animal with the same cancer cells, they don’t develop tumors,” MacNeill said. Viral infection of the cancer cells appears to train the immune system to better recognize the cancer, she said.

In the new study, the researchers wanted to see if spontaneously occurring cancers in dogs were responsive to infection with a virus that is not a pathogen in humans or dogs. They found that cancerous and healthy canine cells respond as human cells do to myxoma infection: The virus invades cancer cells and leaves healthy cells alone. The team also showed that a version of the myxoma virus with a single gene deleted was four times better at killing cancer cells than the unmodified virus. The deleted gene codes for a protein that hinders cell death in infected cells.

More preliminary tests are needed and researchers have many more years of tests and trials ahead, but if all goes well they will eventually test the virus or a modified version of the virus in dogs with cancer, MacNeill said.

“We wanted to make sure that the dog cells were like the human cells because we want to use these viruses not only to cure dogs of cancer but also to use the dogs as better models for humans with cancer,” she said. “People are beginning to see the logic of this approach. These dogs have spontaneous tumors just like humans, they’re living in the same environment as humans, they’re exposed to the same carcinogens in the water if there are any and they sometimes even share our food.”

She calls this approach a “win-win” for dogs and humans.

“This way we can test the therapy in dogs while at the same time treating them,” she said. “Other researchers can take our results and use them to develop therapies for human patients.”

The study team also included researchers from the University of Florida.

Read Next

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Engineering Civil and Environmental Engineering Professor Nishant Garg, center, is joined by fellow researchers, from left: Yujia Min, Hossein Kabir, Nishant Garg, center, Chirayu Kothari and M. Farjad Iqbal, front right. In front are examples of clay samples dissolved at different concentrations in a NaOH solution. The team invented a new test that can predict the performance of cementitious materials in mere 5 minutes. This is in contrast to the standard ASTM tests, which take up to 28 days. This new advance enables real-time quality control at production plants of emerging, sustainable materials. Photo taken at the University of Illinois Urbana-Champaign on Monday, Feb. 3, 2025. (Photo by Fred Zwicky / University of Illinois Urbana-Champaign)

Researchers develop a five-minute quality test for sustainable cement industry materials

A new test developed at the University of Illinois Urbana-Champaign can predict the performance of a new type of cementitious construction material in five minutes — a significant improvement over the current industry standard method, which takes seven or more days to complete. This development is poised to advance the use of next-generation resources called supplementary cementitious materials — or SCMs — by speeding up the quality-check process before leaving the production floor.

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010