Strategic Communications and Marketing News Bureau

Researchers successfully simulate photosynthesis and design a better leaf

In a computer model, researchers at Illinois were able to simulate the photosynthetic behavior of actual leaves. Here, a gas exchange system measures the rate of carbon dioxide and electron transport in intact leaves.

In a computer model, researchers at Illinois were able to simulate the photosynthetic behavior of actual leaves. Here, a gas exchange system measures the rate of carbon dioxide and electron transport in intact leaves.

CHAMPAIGN, Ill. – University of Illinois researchers have built a better plant, one that produces more leaves and fruit without needing extra fertilizer. The researchers accomplished the feat using a computer model that mimics the process of evolution. Theirs is the first model to simulate every step of the photosynthetic process.

The research findings appear in the October issue of Plant Physiology, and will be presented today at the BIO-Asia 2007 Conference in Bangkok, Thailand. The research was sponsored by the National Science Foundation.

Photosynthesis converts light energy into chemical energy in plants, algae, phytoplankton and some species of bacteria and archaea. Photosynthesis in plants involves an elaborate array of chemical reactions requiring dozens of protein enzymes and other chemical components. Most photosynthesis occurs in a plant’s leaves.

“The question we wanted to ask, was, ‘Can we do better than the plant, in terms of productivity?’ ” said principal investigator Steve Long, a professor of plant biology and crop sciences at the University of Illinois.

It wasn’t feasible to tackle this question with experiments on actual plants, Long said. With more than 100 proteins involved in photosynthesis, testing one protein at a time would require an enormous investment of time and money.

“But now that we have the photosynthetic process ‘in silico,’ we can test all possible permutations on the supercomputer,” he said.

The researchers first had to build a reliable model of photosynthesis, one that would accurately mimic the photosynthetic response to changes in the environment. This formidable task relied on the computational resources available at the National Center for Supercomputing Applications.

Xin-Guang Zhu, a research scientist at the center and in plant biology, worked with Long and Eric de Sturler, formerly a specialist in computational mathematics in computer sciences at Illinois, to realize this model.

"The question we wanted to ask, was, 'Can we do better than the plant, in terms of productivity?' " said principal investigator Steve Long, a professor of plant biology and crop sciences at Illinois.

“The question we wanted to ask, was, ‘Can we do better than the plant, in terms of productivity?’ ” said principal investigator Steve Long, a professor of plant biology and crop sciences at Illinois.

After determining the relative abundance of each of the proteins involved in photosynthesis, the researchers created a series of linked differential equations, each mimicking a single photosynthetic step. The team tested and adjusted the model until it successfully predicted the outcome of experiments conducted on real leaves, including their dynamic response to environmental variation.

The researchers then programmed the model to randomly alter levels of individual enzymes in the photosynthetic process.

Before a crop plant, like wheat, produces grain, most of the nitrogen it takes in goes into the photosynthetic proteins of its leaves. Knowing that it was undesirable to add more nitrogen to the plants, Long said, the researchers asked a simple question: “Can we do a better job than the plant in the way this fixed amount of nitrogen is invested in the different photosynthetic proteins?”

Using “evolutionary algorithms,” which mimic evolution by selecting for desirable traits, the model hunted for enzymes that – if increased – would enhance plant productivity. If higher concentrations of an enzyme relative to others improved photosynthetic efficiency, the model used the results of that experiment as a parent for the next generation of tests.

This process identified several proteins that could, if present in higher concentrations relative to others, greatly enhance the productivity of the plant. The new findings are consistent with results from other researchers, who found that increases in one of these proteins in transgenic plants increased productivity.

“By rearranging the investment of nitrogen, we could almost double efficiency,” Long said.

An obvious question that stems from the research is why plant productivity can be increased so much, Long said. Why haven’t plants already evolved to be as efficient as possible?

“The answer may lie in the fact that evolution selects for survival and fecundity, while we were selecting for increased productivity,” he said. The changes suggested in the model might undermine the survival of a plant living in the wild, he said, “but our analyses suggest they will be viable in the farmer’s field.”

Long also is the deputy director of the Energy Biosciences Institute and an affiliate of the Institute for Genomic Biology and the supercomputing center.

Subscribe to this RSS Feed | Email to a friend | View the RSS Feed

Editor’s note: To reach Long, call 217-333-2487; e-mail: slong@illinois.edu.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010