Strategic Communications and Marketing News Bureau

Researchers solve one mystery of high-temperature superconductors

Physics professor Philip Phillips led the team that solved an experimental mystery - the origin of the insulating state in a class of materials known as doped Mott insulators.

Physics professor Philip Phillips led the team that solved an experimental mystery – the origin of the insulating state in a class of materials known as doped Mott insulators.

CHAMPAIGN, Ill. – An experimental mystery – the origin of the insulating state in a class of materials known as doped Mott insulators – has been solved by researchers at the University of Illinois at Urbana-Champaign. The solution helps explain the bizarre behavior of doped Mott insulators, such as high-temperature copper-oxide superconductors.

In a paper published in the Nov. 2 issue of the journal Physical Review Letters, physics professor Philip Phillips and graduate student Ting-Pong Choy show that lightly doped Mott insulators are, in fact, still insulators. The scientists’ theoretical results confirm previous experimental findings obtained by other researchers.

Unlike low-temperature superconductors, which are metals, high-temperature superconductors are insulators in their normal state. This has puzzled scientists, because half of the electron states are empty.

“Mott insulators have many available states for electrons to occupy, so you would expect these materials to conduct like metals,” Phillips said. “Experiments have shown, however, that they act as insulators.”

Even more surprising, when Mott insulators are lightly doped with holes – thereby creating even more places for electrons to occupy – the material still refuses to conduct.

Strong electron interaction is the key to understanding doped Mott insulators, Phillips said. “All energy scales are inextricably coupled. If you attempt to separate them, you destroy the physics of the Mott state.”

The fact that lightly doped Mott insulators are still insulators is an intrinsic property of Mott physics (that is, Mottness), the researchers claim. The insulating state is not caused by disorder, exotic excitations or something external to the system.

“In most materials, if you kill superconductivity by applying a large magnetic field, the resistivity falls to some finite value,” Phillips said. “In doped Mott insulators, however, the resistivity climbs to infinity. The background state uncovered as a result of destroying superconductivity is an insulating state.”

A future experiment could easily prove the researchers’ claims. While chemical doping causes disorder in the material, the technique of photodoping creates holes without causing disorder.

“If experimenters create such holes and still see this insulating state, then we will know for a fact that insulating doped Mott insulators is due to Mottness,” Phillips said.

The research was funded by the National Science Foundation.

Editor’s note: To reach Philip Phillips, call 217-244-2003; e-mail: dimer@illinois.edu.

Read Next

Campus news Vikram Adve, Rohit Bhargava, Andrew Suarez and Jennifer Teper.

Faculty members honored with 2025 Campus Awards for Excellence in Faculty Leadership

Four University of Illinois Urbana-Champaign faculty members were honored by the Office of the Provost with the 2025 Campus Awards for Excellence in Faculty Leadership.

Campus news University of Illinois Urbana-Champaign students Lindsay Bitner-Mitchell and Cecelia Escobar have been selected to participate in the U.S.-U.K. Fulbright Commission’s Summer Institutes program. Photo collage: Fred Zwicky

Two Illinois students selected for Fulbright’s Summer Institute to the UK

Two University of Illinois Urbana-Champaign students received places in the Fulbright Commission’s Summer Institutes program.

Research news Portrait of Lissette Piedra standing in front of a bookcase wearing a beige jacket and black shirt

Study reveals how social networks shape health in later life

CHAMPAIGN, Ill. ― A new study sheds light on the powerful connection between social networks and health in later life and reveals a surprising path for improving health equity among older adults. Published in the journal Innovation in Aging, the study tracked over 1,500 older adults for a decade using three rounds of data from […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010