Strategic Communications and Marketing News Bureau

Researchers solve one mystery of high-temperature superconductors

Physics professor Philip Phillips led the team that solved an experimental mystery - the origin of the insulating state in a class of materials known as doped Mott insulators.

Physics professor Philip Phillips led the team that solved an experimental mystery – the origin of the insulating state in a class of materials known as doped Mott insulators.

CHAMPAIGN, Ill. – An experimental mystery – the origin of the insulating state in a class of materials known as doped Mott insulators – has been solved by researchers at the University of Illinois at Urbana-Champaign. The solution helps explain the bizarre behavior of doped Mott insulators, such as high-temperature copper-oxide superconductors.

In a paper published in the Nov. 2 issue of the journal Physical Review Letters, physics professor Philip Phillips and graduate student Ting-Pong Choy show that lightly doped Mott insulators are, in fact, still insulators. The scientists’ theoretical results confirm previous experimental findings obtained by other researchers.

Unlike low-temperature superconductors, which are metals, high-temperature superconductors are insulators in their normal state. This has puzzled scientists, because half of the electron states are empty.

“Mott insulators have many available states for electrons to occupy, so you would expect these materials to conduct like metals,” Phillips said. “Experiments have shown, however, that they act as insulators.”

Even more surprising, when Mott insulators are lightly doped with holes – thereby creating even more places for electrons to occupy – the material still refuses to conduct.

Strong electron interaction is the key to understanding doped Mott insulators, Phillips said. “All energy scales are inextricably coupled. If you attempt to separate them, you destroy the physics of the Mott state.”

The fact that lightly doped Mott insulators are still insulators is an intrinsic property of Mott physics (that is, Mottness), the researchers claim. The insulating state is not caused by disorder, exotic excitations or something external to the system.

“In most materials, if you kill superconductivity by applying a large magnetic field, the resistivity falls to some finite value,” Phillips said. “In doped Mott insulators, however, the resistivity climbs to infinity. The background state uncovered as a result of destroying superconductivity is an insulating state.”

A future experiment could easily prove the researchers’ claims. While chemical doping causes disorder in the material, the technique of photodoping creates holes without causing disorder.

“If experimenters create such holes and still see this insulating state, then we will know for a fact that insulating doped Mott insulators is due to Mottness,” Phillips said.

The research was funded by the National Science Foundation.

Editor’s note: To reach Philip Phillips, call 217-244-2003; e-mail: dimer@illinois.edu.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010