Strategic Communications and Marketing News Bureau

Researchers look to patterns to envision new engineering field

CHAMPAIGN, Ill. — The phenomenon that forms interference patterns on television displays when a camera focuses on a pattern like a person wearing stripes has inspired a new way to conceptualize electronic devices. Researchers at the University of Illinois are showing how the atomic-scale version of this phenomenon may hold the secrets to help advance electronics design to the limits of size and speed. 

In their new study, mechanical science and engineering professor Harley Johnson and his co-authors recast a detail previously seen as a defect in nanomaterial design to a concept that could reshape the way engineers design electronics. The team, which also includes mechanical science and engineering graduate student Brian McGuigan and French collaborators Pascal Pochet and Johann Coraux, published its findings in the journal Applied Materials Today.

On display screens, moire patterns occur when the pixelation is at almost the same scale as a photographed pattern, Johnson said, or when two thin layers of a material with a periodic structure, like sheer fabrics and window screens, are placed on top of each other slightly askew.

At the macro scale, moires are optical phenomena that do not form tangible objects. However, when these patterns occur at the atomic level, arrangements of electrons are locked into place by atomic forces to form nanoscale wires capable of transmitting electricity, the researchers said. 

“Two-dimensional materials – thin films engineered to be of single-atom thickness – create moire patterns when stacked on top of each other and are skewed, stretched, compressed or twisted,” Johnson said. “The moire emerges as atoms form linear areas of high electron density. The resulting lines create what is essentially an extremely thin wire.”

For decades, physicists observed microscope images of atomic arrangements of 2-D thin films and recognized them as periodic arrays of small defects known as dislocations, but Johnson’s group is the first to note that these are also common moire patterns.

“A moire pattern is simply an array of dislocations, and an array of dislocations is a moire pattern – it goes both ways,” Johnson said. This realization opened the door to what Johnson’s group refers to as moire engineering – what could lead to a new way to manufacture the smallest, lightest and fastest electronics.

By manipulating the orientation of stacked layers of 2-D thin films like graphene, wires of single-atom thickness can be assembled, building the foundation to write nanocircuitry. A wire of single-atom thickness is the limit of thinness. The thinner the wire, the faster electrons can travel, meaning this technology has the potential to produce the quickest transmitting wires and circuits possible, the researchers said.

“There is always the question of how to connect to a circuit that small,” Johnson said. “There is still a lot of work to be done in finding ways to stitch together 2-D materials in a way that could produce a device.”

In the meantime, Johnson’s group is focusing on types of devices that can be made using moire engineering.

“Being able to engineer the moire pattern itself is a path to new lightweight and less-intrusive devices that could have applications in the biomedical and space industries,” he said. “The possibilities are limited only by the imagination of engineers.”

A Fulbright U.S. scholarship, the Universite Joseph Fourier, the National Science Foundation Graduate Fellowship Program and the French National Research Agency supported this research.

To reach Harley Johnson, call 217-265-5468; htj@illinois.edu.

The paper “Toward moire engineering in 2-D materials via dislocation theory” is available online and from the U. of I. News Bureau. DOI: 10.1016/j.apmt.2017.07.007

Read Next

Engineering Tilted image of used batteries.

Study shows new hope for commercially attractive lithium extraction from spent batteries

A new study shows that lithium — a critical element used in rechargeable batteries and susceptible to supply chain disruption — can be recovered from battery waste using an electrochemically driven recovery process. The method has been tested on commonly used types of lithium-containing batteries and demonstrates economic viability with the potential to simplify operations, minimize costs and increase the sustainability and attractiveness of the recovery process for commercial use.

Health and Medicine Research team in the lab.

Study: A cellular protein, FGD3, boosts breast cancer chemotherapy, immunotherapy

CHAMPAIGN, Ill. — A naturally occurring protein that tends to be expressed at higher levels in breast cancer cells boosts the effectiveness of some anticancer agents, including doxorubicin, one of the most widely used chemotherapies, and a preclinical drug known as ErSO, researchers report. The protein, FGD3, contributes to the rupture of cancer cells disrupted […]

Arts Photo from "Anastasia: The Musical" showing the Romanov family in period costumes.

Lyric Theatre’s production of “Anastasia: The Musical” tells story of loss, survival and reinvention

CHAMPAIGN, Ill. — The Lyric Theatre’s production of “Anastasia: The Musical” is a story with romance and mystery, an appealing score and several big dance numbers. It also is a story of loss, survival and reinvention. The musical opened on Nov. 11 and will be performed Nov. 13-15 at Krannert Center for the Performing Arts. […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010