Strategic Communications and Marketing News Bureau

Researchers identify molecular ‘culprit’ in rise of planetary oxygen

CHAMPAIGN, lll. – A turning point in the history of life occurred 2 billion to 3 billion years ago with the unprecedented appearance and dramatic rise of molecular oxygen. Now researchers report they have identified an enzyme that was the first – or among the first – to generate molecular oxygen on Earth.

The new findings, reported in the journal Structure, build on more than a dozen previous studies that aim to track the molecular evolution of life by looking for evidence of that history in present-day protein structures. These studies, led by University of Illinois crop sciences and Institute for Genomic Biology professor Gustavo Caetano-Anollés, focus on structurally and functionally distinct regions of proteins – called folds – that are part of the universal tool kit of living cells.

Protein folds are much more stable than the sequences of amino acids that compose them, Caetano-Anollés said. Mutations or other changes in sequence often occur without disrupting fold structure or function. This makes folds much more reliable markers of long-term evolutionary patterns, he said.

In the new study, Caetano-Anollés, working with colleagues in China and Korea, tackled an ancient mystery: Why did some of the earliest organisms begin to generate oxygen, and why?

“There is a consensus from earth scientists that about 2.4 billion years ago there was a big spike in oxygen on Earth,” Caetano-Anollés said. They generally agree that this rise in oxygen, called the Great Oxygenation Event, was tied to the emergence of photosynthetic organisms.

“But the problem now comes with the following question,” he said. “Oxygen is toxic, so why would a living organism generate oxygen? Something must have triggered this.”

The researchers looked for answers in the “molecular fossils” that still reside in living cells. They analyzed protein folds in nearly a thousand organisms representing every domain of life to assemble a timeline of protein history. Their timeline for this study was limited to single-fold proteins (which the researchers believe are the most ancient), and was calibrated using microbial fossils that appeared in the geologic record at specific dates.

The analysis revealed that the most ancient reaction of aerobic metabolism involved synthesis of pyridoxal (the active form of vitamin B6, which is essential to the activity of many protein enzymes) and occurred about 2.9 billion years ago. An oxygen-generating enzyme, manganese catalase, appeared at the same time.

Other recent studies also suggest that aerobic (oxygen-based) respiration began on Earth 300 million to 400 million years before the Great Oxidation Event, Caetano-Anollés said. This would make sense, since oxygen production was probably going on for a while before the spike in oxygen occurred.

Catalases convert hydrogen peroxide to water and oxygen. The researchers hypothesize that primordial organisms “discovered” this enzyme when trying to cope with an abundance of hydrogen peroxide in the environment. Some geochemists believe that hydrogen peroxide was abundant at this time as a result of intensive solar radiation on glaciers that covered much of Earth.

“In the glacial melt waters you would have a high concentration of hydrogen peroxide and that would be gradually exposing a number of the primitive organisms (alive at that time),” Caetano-Anollés said. The appearance of manganese catalase, an enzyme that degrades hydrogen peroxide and generates oxygen as a byproduct, makes it a likely “molecular culprit for the rise of oxygen on the planet,” he said.

The research team included scientists from the Korea Research Institute of Bioscience and Biotechnology; Huazhong Agricultural University, China; and Shandong University of Technology, China.

Editor’s note: To contact Gustavo Caetano-Anollés, call 217-333-8172; email gca@illinois.edu.

 The paper, “Protein Domain Structure Uncovers the Origin of Aerobic Metabolism and the Rise of Planetary Oxygen,” is available from the U. of I. News Bureau.

Read Next

Humanities Diptych image with book cover of "The New Internationals" and a headshot of English professor David Wright Faladé

English professor’s novel tells of love triangle in post-WWII Paris, based on his family history

CHAMPAIGN, Ill. — A new novel by University of Illinois Urbana-Champaign English professor David Wright Faladé tells the story of three people in a love triangle in post-World War II Paris. The characters in “The New Internationals” — a young French woman who has survived the Holocaust, a university student from West Africa and a […]

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010