Strategic Communications and Marketing News Bureau

Researchers embrace imperfection to improve biomolecule transport

CHAMPAIGN, Ill. — While watching the production of porous membranes used for DNA sorting and sequencing, University of Illinois researchers wondered how tiny steplike defects formed during fabrication could be used to improve molecule transport. They found that the defects – formed by overlapping layers of membrane – make a big difference in how molecules move along a membrane surface. Instead of trying to fix these flaws, the team set out to use them to help direct molecules into the membrane pores.

Their findings are published in the journal Nature Nanotechnology.

Nanopore membranes have generated interest in biomedical research because they help researchers investigate individual molecules – atom by atom – by pulling them through pores for physical and chemical characterization. This technology could ultimately lead to devices that can quickly sequence DNA, RNA or proteins for personalized medicine.

Physics professor Aleksei Aksimentiev, left, and graduate student Manish Shankla.

Physics professor Aleksei Aksimentiev, left, and graduate student Manish Shankla.

In 2014, University of Illinois physics professor Aleksei Aksimentiev and graduate student Manish Shankla demonstrated a graphene membrane that controlled a molecule’s movement through a nanopore by means of electrical charge. They discovered that once the molecules are on the surface of the membrane, it is very difficult to get them to shuffle into the membrane’s pores because molecules like to stick to the surface.

While on sabbatical at Delft University of Technology in the Netherlands, Aksimentiev found that DNA tends to accumulate and stick along the edges of fabrication-formed defects that occur as linear steps spanning across the membrane’s surface. The Illinois team’s goal was to find a way to use these flaws to direct the stuck molecules into the nanopores, as a principle that can also apply to the delivery, sorting and analysis of biomolecules.

To refine and confirm their observations, the researchers used the Blue Waters supercomputer at the National Center for Supercomputing Applications at Illinois and the XSEDE supercomputer to model the system and molecule movement scenarios at the atomic level.

In this supercomputer simulation, a DNA molecule, directed by a force, moves down a fabrication-formed step defect along the surface of a graphene membrane.

In this supercomputer simulation, a DNA molecule, directed by a force, moves down a fabrication-formed step defect along the surface of a graphene membrane.

“Molecular dynamics simulations let us watch what is happening while simultaneously measuring how much force is required to get the molecule to clear a step,” Aksimentiev said. “We were surprised to find that it takes less force to move a molecule down a step than up. Although it may seem intuitive that gravity would make stepping down easier, it is not the case here because gravity is negligible at the nanoscale, and the force required to move up or down should be the same.”

See a video at https://youtu.be/kWEc_597F0g

Aksimentiev said team members originally thought they could use concentric defect patterns that form around the pores to force the molecules down, but their simulations showed the molecules congregating along the edges of the steps. That is when it dawned on them: A defect with edges that spiral into a pore, combined with an applied directional force, would give the molecule no other option than to go into the pore – kind of like a drain.  

A supercomputer simulation shows a force-guided DNA molecule as it is directed down a spiral defect toward a graphene nanopore.

A supercomputer simulation shows a force-guided polypeptide molecule as it is directed down a spiral defect toward a graphene nanopore.

“This way, we can drop molecules anywhere on the membrane covered with these spiral structures and then pull the molecules into a pore,” he said.

See a video at https://youtu.be/VWlbbvl1ZSY

The researchers have not yet produced a membrane with spiral defects in the laboratory, but that task may be easier than trying to rid a graphene membrane of the current molecule-immobilizing step defects, they said.

“When manufactured at scale, defect-guided capture may potentially increase the DNA capture throughput by several orders of magnitude, compared with current technology,” Shankla said.

“After a long development process, we are excited to see this principle used in a variety of other materials and applications such as delivery of individual molecules to reaction chambers for experiments,” the researchers said.  

The National Institutes of Health, National Science Foundation and the Dutch Research Council supported this research.

To reach Aleksei Aksimentiev, call 217-333-6495; aksiment@illinois.edu.

The paper “Step-defect guided delivery of DNA to a graphene nanopore” is available online and from the U. of I. News Bureau. DOI: 10.1038/s41565-019-0514-y

Read Next

Engineering Portrait of the researchers standing outside on campus.

Model tackles key obstacle to efficient plastic recycling

CHAMPAIGN, Ill. — Most people who separate their plastic waste for recycling assume the bulk of it will in fact be recycled. But current recycling methods, which “require sorting, grinding, cleaning, remelting and extrusion to obtain plastic pellets, usually lead to lower value materials because of contamination and mechanochemical degradation,” the authors of a new […]

Social sciences Sociology professor Brittney Miles shown in profile with a Black history mural at the Bruce D. Nesbitt African American Cultural Center on campus.in the background.

Black women’s beauty, fashion choices intertwined with Black history, politics

CHAMPAIGN, Ill. — Black women’s beauty and fashion are complex, meaningful acts, deliberate strategies for engaging with the world that make bold statements about identity, political resistance and empowerment, Black women said in a recent study. Researcher Brittney Miles, a sociology professor at the University of Illinois Urbana-Champaign, interviewed 39 Black women about their fashion […]

Uncategorized Rows of MRI images from two patients with brain tumors

New MRI approach maps brain metabolism, revealing disease signatures

CHAMPAIGN, Ill. — A new technology that uses clinical MRI machines to image metabolic activity in the brain could give researchers and clinicians unique insight into brain function and disease, researchers at the University of Illinois Urbana-Champaign report. The non-invasive, high-resolution metabolic imaging of the whole brain revealed differences in metabolic activity and neurotransmitter levels […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010