Strategic Communications and Marketing News Bureau

Research shines spotlight on a key player in the dance of chromosomes

Illinois postdoctoral researcher Hasan Yardimci, left, and physics professor Paul Selvin explored the role of a motor protein, CENP-E, in moving chromosomes during a critical phase of cell division.

Illinois postdoctoral researcher Hasan Yardimci, left, and physics professor Paul Selvin explored the role of a motor protein, CENP-E, in moving chromosomes during a critical phase of cell division.

CHAMPAIGN, Ill. – Cell division is essential to life, but the mechanism by which emerging daughter cells organize and divvy up their genetic endowments is little understood. In a new study, researchers at the University of Illinois and Columbia University report on how a key motor protein orchestrates chromosome movements at a critical stage of cell division.

The study appeared in the Proceedings of the National Academy of Sciences.

Within the complex world of the cell, motor proteins function as a kind of postal service. These proteins carry cargo from one location to another in the cell, a job that requires precision, in both the location and the timing of delivery. They are fueled by a small molecule, adenosine tri-phosphate (ATP).

Some motor proteins are essential to mitosis – the process by which cell division occurs in higher organisms. During cell division it is important for chromosomes to line up at the middle of the parent cell allowing for their separation between the two daughter cells.

Motor proteins play a key role in the movement of chromosomes to and from the poles of the cell. Should any of these processes lose coordination, it could result in disease or cell death.

How chromosomes move during cell division is a question that is fundamental to biology and is of importance in understanding many diseases. University of Illinois physics professor Paul Selvin and his colleagues focused on a motor protein, centromeric protein E (CENP-E) that is known to be associated with chromosomes.

“The question is whether CENP-E acts like a transporter or like an anchor,” Selvin said.

“A transporter moves things around the cell, whereas an anchor sits someplace in the cell, holds onto something, and causes the thing to be held down,” Selvin said. “It turns out CENP-E is known to be an anchor, but is it also a transporter?”

Earlier studies had established a role for CENP-E in aligning paired chromosomes. This alignment is important for ensuring that one of each pair makes its way into a different daughter cell.

CENP-E is part of a large class of proteins called kinesins. These motor proteins walk across the cell on special tightropes, called microtubules, using ATP as an energy source.

“The motion of ‘normal’ kinesin, kinesin-1, is now well known,” Selvin said. “It turns out it’s like a little person – it walks with its two feet, one in front of the other. I was interested to know whether the normal rules of how kinesin walks apply to these different kinds of kinesins.”

“In vivo studies are hampered by the presence of lots of other proteins, making it hard to study how much a single protein moves, how fast it moves and how much force it produces,” said Hasan Yardimci, a post doctoral researcher in Selvin’s lab and lead author on the study.

Instead, Yardimci used a technique that allowed him to look at one molecule at a time.

The most direct way to measure how a protein moves is to watch it in real time. Using special molecular bulbs called quantum dots, which light up the protein, Yardimci was able to watch CENP-E move along its microtubule tightrope. By resolving these motions on the nanometer scale, he was able to make two key observations.

“The protein takes eight nanometer steps in a hand-over-hand fashion,” Yardimci said. The protein moved in a direction consistent with the way chromosomes move within cells, over lengths that are normally observed during cell division.

To test the kind of loads that CENP-E could withstand, Yardimci set up a tug of war between a micron-sized bead and the protein. As the protein moved, it pulled on the bead.

By measuring the force on the bead, the researchers were able to calculate how much force CENP-E could exert.

The observation that CENP-E shares several common features with kinesin-1 provides insights into its molecular workings.

“We showed that it is likely that CENP-E moves chromosomes around,” Selvin said. “That is, we showed that it is a transporter in vitro, hauling around a little bead. Now we need to do it in vivo, on chromosomes.”

The research team included Steven Rosenfeld at Columbia University.

 

Editor’s note: To reach Paul Selvin, call 217-244-3371; e-mail: selvin@illinois.edu.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010