Strategic Communications and Marketing News Bureau

Protein that kills cells also important for memory

David F. Clayton, left, and Graham R. Huesmann have studied how zebra finches learn songs, which could have implications for the treatment of neurodegenerative conditions such as dementia and Alzheimer's disease.

David F. Clayton, left, and Graham R. Huesmann have studied how zebra finches learn songs, which could have implications for the treatment of neurodegenerative conditions such as dementia and Alzheimer’s disease.

CHAMPAIGN, Ill. – A protein known primarily for its role in killing cells also plays a part in memory formation, researchers at the University of Illinois at Urbana-Champaign report. Their work exploring how zebra finches learn songs could have implications for treatment of neurodegenerative conditions such as dementia and Alzheimer’s disease.

When activated, the enzyme caspase-3 triggers a synaptic process essential for memory storage, according to Graham R. Huesmann and David F. Clayton of the department of cell and developmental biology and of the U. of I. Beckman Institute for Advanced Science and Technology. Their article, which appears in the Dec. 21 issue of the journal Neuron, describes their findings, which provide “the first direct evidence of a change in the availability of activated caspase-3 protein in the brain during the process of memory formation.”

Caspase-3 is best known for its role in a biochemical cascade that leads to apoptotic cell death. These new findings demonstrate that the enzyme acts differently under different conditions, and suggest that its regulation in the brain is more complex than previously thought.

Huesmann and Clayton examined the brains of zebra finches after exposing the birds to tape recordings of the songs of other birds. They found an increase in the concentration of activated caspase-3 in post-synaptic sites of the auditory forebrain shortly after the birds were exposed to unfamiliar bird songs. Exposure to familiar songs caused no significant increase in the enzyme.

Zebra finches
Click photo to enlarge
Photo by Sarah London
Male zebra finch flanked by two females.

The researchers demonstrated that the activated form of caspase-3 is short-lived and highly localized, which may explain why the enzyme does not trigger apoptosis.

They also showed that activated caspase-3 is always present in brain cells, but that it is usually bound by an inhibitor, BIRC4. For a short time after the birds are exposed to novel songs, the inhibitor releases the activated caspase-3. The concentration of unbound, activated caspase-3 peaks about 10 minutes after the birds hear the new songs.

Other research has added to the evidence that caspase-3 is essential to memory formation. Caspase-3 inhibitors injected into rat brains interfere with the animals’ spatial memory and active avoidance learning.

Caspase-3’s dual role as a cell killer and memory builder has long intrigued Huesmann, the lead author of the study. “Is it Memory or Is It Death? Caspase-3 and Memory Formation,” was his dissertation title. Huesmann has a doctorate in neuroscience and is completing a medical degree at Illinois.

“Graham had this intuition that growth and memory is really a kind of remodeling,” said Clayton, who is a professor of cell and developmental biology. “You can’t have growth without death.”

Editor’s note: To reach Graham R. Huesmann, call 217-244-1450; e-mail: huesmann@illinois.edu.

To reach David F. Clayton, call 217-244-3668; e-mail: dclayton@illinois.edu.

Read Next

Announcements Graphic says: 2025 Highly Cited Researchers. Background is orange with an image of journal articles stacked and open.

Twelve Illinois scientists rank among the world’s most influential

CHAMPAIGN, Ill. — Twelve scientists at the University of Illinois Urbana-Champaign have been named to the 2025 Clarivate Analytics Highly Cited Researchers list. The list recognizes researchers and social scientists who have demonstrated exceptional influence, as reflected through their publication of multiple papers frequently cited by their peers during the last decade. The highly cited […]

Engineering A tilted view of miscellaneous of multicolored used batteries.

Study shows new hope for commercially attractive lithium extraction from spent batteries

A new study shows that lithium — a critical element used in rechargeable batteries and susceptible to supply chain disruption — can be recovered from battery waste using an electrochemically driven recovery process. The method has been tested on commonly used types of lithium-containing batteries and demonstrates economic viability with the potential to simplify operations, minimize costs and increase the sustainability and attractiveness of the recovery process for commercial use.

Health and Medicine Research team in the lab.

Study: A cellular protein, FGD3, boosts breast cancer chemotherapy, immunotherapy

CHAMPAIGN, Ill. — A naturally occurring protein that tends to be expressed at higher levels in breast cancer cells boosts the effectiveness of some anticancer agents, including doxorubicin, one of the most widely used chemotherapies, and a preclinical drug known as ErSO, researchers report. The protein, FGD3, contributes to the rupture of cancer cells disrupted […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010