Strategic Communications and Marketing News Bureau

Protein that kills cells also important for memory

David F. Clayton, left, and Graham R. Huesmann have studied how zebra finches learn songs, which could have implications for the treatment of neurodegenerative conditions such as dementia and Alzheimer's disease.

David F. Clayton, left, and Graham R. Huesmann have studied how zebra finches learn songs, which could have implications for the treatment of neurodegenerative conditions such as dementia and Alzheimer’s disease.

CHAMPAIGN, Ill. – A protein known primarily for its role in killing cells also plays a part in memory formation, researchers at the University of Illinois at Urbana-Champaign report. Their work exploring how zebra finches learn songs could have implications for treatment of neurodegenerative conditions such as dementia and Alzheimer’s disease.

When activated, the enzyme caspase-3 triggers a synaptic process essential for memory storage, according to Graham R. Huesmann and David F. Clayton of the department of cell and developmental biology and of the U. of I. Beckman Institute for Advanced Science and Technology. Their article, which appears in the Dec. 21 issue of the journal Neuron, describes their findings, which provide “the first direct evidence of a change in the availability of activated caspase-3 protein in the brain during the process of memory formation.”

Caspase-3 is best known for its role in a biochemical cascade that leads to apoptotic cell death. These new findings demonstrate that the enzyme acts differently under different conditions, and suggest that its regulation in the brain is more complex than previously thought.

Huesmann and Clayton examined the brains of zebra finches after exposing the birds to tape recordings of the songs of other birds. They found an increase in the concentration of activated caspase-3 in post-synaptic sites of the auditory forebrain shortly after the birds were exposed to unfamiliar bird songs. Exposure to familiar songs caused no significant increase in the enzyme.

Zebra finches
Click photo to enlarge
Photo by Sarah London
Male zebra finch flanked by two females.

The researchers demonstrated that the activated form of caspase-3 is short-lived and highly localized, which may explain why the enzyme does not trigger apoptosis.

They also showed that activated caspase-3 is always present in brain cells, but that it is usually bound by an inhibitor, BIRC4. For a short time after the birds are exposed to novel songs, the inhibitor releases the activated caspase-3. The concentration of unbound, activated caspase-3 peaks about 10 minutes after the birds hear the new songs.

Other research has added to the evidence that caspase-3 is essential to memory formation. Caspase-3 inhibitors injected into rat brains interfere with the animals’ spatial memory and active avoidance learning.

Caspase-3’s dual role as a cell killer and memory builder has long intrigued Huesmann, the lead author of the study. “Is it Memory or Is It Death? Caspase-3 and Memory Formation,” was his dissertation title. Huesmann has a doctorate in neuroscience and is completing a medical degree at Illinois.

“Graham had this intuition that growth and memory is really a kind of remodeling,” said Clayton, who is a professor of cell and developmental biology. “You can’t have growth without death.”

Editor’s note: To reach Graham R. Huesmann, call 217-244-1450; e-mail: huesmann@illinois.edu.

To reach David F. Clayton, call 217-244-3668; e-mail: dclayton@illinois.edu.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010