Strategic Communications and Marketing News Bureau

Pocket chemistry: DNA helps glucose meters measure more than sugar

CHAMPAIGN, Ill. – Glucose meters aren’t just for diabetics anymore. Thanks to University of Illinois chemists, they can be used as simple, portable, inexpensive meters for a number of target molecules in blood, serum, water or food.

Chemistry professor Yi Lu and colleagues have found that glucose meters can be used as simple, portable, inexpensive meters for a number of target molecules in blood, serum, water or food.

Chemistry professor Yi Lu and colleagues have found that glucose meters can be used as simple, portable, inexpensive meters for a number of target molecules in blood, serum, water or food.

Chemistry professor Yi Lu and postdoctoral researcher Yu Xiang published their findings in the journal Nature Chemistry.

“The advantages of our method are high portability, low cost, wide availability and quantitative detection of a broad range of targets in medical diagnostics and environmental monitoring,” Lu said. “Anyone could use it for a wide range of detections at home and in the field for targets they may care about, such as vital metabolites for a healthy living, contaminants in their drinking water or food, or potential disease markers.”

A glucose meter is one of the few widely available devices that can quantitatively detect target molecules in a solution, a necessity for diagnosis and detection, but only responds to one chemical: glucose. To use them to detect another target, the researchers coupled them with a class of molecular sensors called functional DNA sensors.

Functional DNA sensors use short segments of DNA that bind to specific targets. A number of functional DNAs and RNAs are available to recognize a wide variety of targets.

They have been used in the laboratory in conjunction with complex and more expensive equipment, but Lu and Xiang saw the potential for partnering them with pocket glucose meters.

The DNA segments, immobilized on magnetic particles, are bound to the enzyme invertase, which can catalyze conversion of sucrose (table sugar) to glucose. The user adds a sample of blood, serum or water to the functional DNA sensor to test for drugs, disease markers, contaminants or other molecules. When the target molecule binds to the DNA, invertase is released into the solution. After removing the magnetic particle by a magnet, the glucose level of the sample rises in proportion to the amount of invertase released, so the user then can employ a glucose meter to quantify the target molecule in the original sample.

“Our method significantly expands the range of targets the glucose monitor can detect,” said Lu, who also is affiliated with the Beckman Institute for Advanced Science and Technology and with the Frederick Seitz Materials Research Lab at the U. of I. “It is simple enough for someone to use at home, without the high costs and long waiting period of going to the clinics or sending samples to professional labs.”

The researchers demonstrated using functional DNA with glucose meters to detect cocaine, the disease marker interferon, adenosine and uranium. The two-step method could be used to detect any kind of molecule that a functional DNA or RNA can bind.

Next, the researchers plan to further simplify their method, which now requires users to first apply the sample to the functional DNA sensor and then to the glucose meter.

“We are working on integrating the procedures into one step to make it even simpler,” Lu said. “Our technology is new and, given time, it will be developed into an even more user-friendly format.”

The U.S. Department of Energy, the National Institutes of Health and the National Science Foundation supported this work.

Editor’s note: To contact Yi Lu, call 217-333-2619; email yi-lu@illinois.edu.

 The paper, “Using Personal Glucose Meters and Functional DNA Sensors to Quantify a Variety of Analytical Targets,” is available from the U. of I. News Bureau.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010