Strategic Communications and Marketing News Bureau

Plant breeder boosts soybean diversity, develops soybean rust-resistant plant

CHAMPAIGN, Ill. — It took decades of painstaking work, but research geneticist Ram Singh managed to cross a popular soybean variety (“Dwight” Glycine max) with a related wild perennial plant that grows like a weed in Australia, producing the first fertile soybean plants that are resistant to soybean rust, soybean cyst nematode and other pathogens of soy.

 

Decades of work generated hundreds of new soybean lineages, many with desirable traits. Click here to view an interactive informational graphic about the work.

Decades of work generated hundreds of new soybean lineages, many with desirable traits. Click here to view an interactive informational graphic about the work.

Singh works in the Soybean/Maize Germplasm, Pathology and Genetics Research unit in the department of crop sciences at the University of Illinois. The unit is a division of the U.S. Department of Agriculture’s Agricultural Research Program. His effort to introduce the desirable attributes of wild, perennial Glycine species into soybean plants began at the U. of I. in 1983 and followed a path that involved thousands of experiments, the development of a hormone treatment that “rescued” immature hybrid seeds from sterility, and multiple backcrosses of hybrid plants with their “recurrent parent,” Dwight.

Singh’s collaborator, Randall Nelson, the research leader of the ARS soybean/maize research unit, plants seeds from Singh’s most promising experiments, grows the plants and distributes their seeds to other scientists, who screen them for desirable traits and conduct their own breeding experiments.

A report of this work appears in the journal Theoretical and Applied Genetics.

Soybean is the second-most-planted field crop in the U.S. after corn, worth more than $4 billion annually in the U.S.  

Current soybean varieties are susceptible to an array of pests and pathogens. Among them, the parasitic roundworm known as soybean cyst nematode attacks soybean roots and stunts their growth. Soybean rust, a fungus first detected in the U.S. in 2004, taints leaves and eventually defoliates the plants. 

Scientists have known for decades that some wild, perennial soybean relatives had desirable traits that many hoped to introduce into soy, Singh said.

A cross between soybean and a related species, Glycine tomentella (which has smaller leaves) yielded some hybrid plants with resistance to common soybean pathogens.

A cross between soybean and a related species, Glycine tomentella (which has smaller leaves) yielded some hybrid plants with resistance to common soybean pathogens.

“There are 26 wild species of Glycine perennials that grow in Australia,” he said. One species, Glycine tomentella, was of particular interest because it has genes for resistance to soybean rust and to soybean cyst nematode, he said. “Many people tried to hybridize it with soybean plants, starting back in 1979 at the University of Illinois.” But the hybrids produced only sterile plants, “and they decided it was impossible,” Singh said.

He continued to experiment, however, and eventually developed a hormone treatment that interrupted the process that caused the hybrid seeds to abort. He also developed a tissue culture method for producing several embryos – and thus, several plants – from each seed. The plants were grown in a greenhouse, allowed to flower and crossed again with Dwight.

Singh eventually settled on a Glycine tomentella plant known as PI 441001 for these experiments because the wild plant was immune to soybean rust and to soybean cyst nematode. It also was resistant to Phytophthora root rot and could tolerate salt and drought.

As the experiments continued, Singh noted that each generation of hybrids had different numbers of chromosomes, reflecting their blend of soybean and tomentella chromosomes. The goal, said Singh, was to isolate each of tomentella’s 39 chromosomes, adding one at a time to soybean’s 20 pairs of chromosomes. That way, all the genetic richness of tomentella could be captured in the hybrid soybean plants.

Further crosses have introduced the tomentella genes into those of the soybean plants, creating soybean plants with 40 chromosomes and some of the most desirable tomentella traits.

So far, the effort has yielded plants that are resistant to soybean rust, soybean cyst nematode or Phytophthora root rot. Some of the new plants produce more soybeans per plant than Dwight, and some have higher protein content than Dwight. (See graphic.)

The research continues. As a result, soybean breeders now have access to dozens of new soybean lineages, each with some of the traits of the wild Australian plants.

The genetic material in wild Glycine species “is just like a treasure that is locked inside,” Singh said. “With this method, we are unlocking the treasure.”

The Illinois Soybean Association, the Soybean Disease Biotechnology Center at the U. of I., and the United Soybean Board provided partial funding for this work.

 

Editor’s note: To reach Ram Singh, call 217-333-8144; email ramsingh@illinois.edu.

The paper, “Intersubgeneric hybridization between Glycine max and G. tomentella: production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants,” is available online or from the U. of I. News Bureau.  

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010