Strategic Communications and Marketing News Bureau

Next up: Environmentally safe electronics that also vanish in the body

CHAMPAIGN, Ill. – Physicians and environmentalists alike could soon be using a new class of electronic devices: small, robust and high performance, yet also biocompatible and capable of dissolving completely in water – or in bodily fluids.

VIDEO: Engineering professor John Rogers explains how biodegradable electronics technology works.

VIDEO: Engineering professor John Rogers explains how biodegradable electronics technology works.

Researchers at the University of Illinois, in collaboration with Tufts University and Northwestern University, have demonstrated a new type of biodegradable electronics technology that could introduce new design paradigms for medical implants, environmental monitors and consumer devices.

“We refer to this type of technology as transient electronics,” said John A. Rogers, the Lee J. Flory-Founder Professor of Engineering at the U. of I., who led the multidisciplinary research team. “From the earliest days of the electronics industry, a key design goal has been to build devices that last forever – with completely stable performance. But if you think about the opposite possibility – devices that are engineered to physically disappear in a controlled and programmed manner – then other, completely different kinds of application opportunities open up.”

Three application areas appear particularly promising. First are medical implants that perform important diagnostic or therapeutic functions for a useful amount of time and then simply dissolve and resorb in the body. Second are environmental monitors, such as wireless sensors that are dispersed after a chemical spill, that degrade over time to eliminate any ecological impact. Third are consumer electronic systems or sub-components that are compostable, to reduce electronic waste streams generated by devices that are frequently upgraded, such as cellphones or other portable devices.

Transient electronic systems harness and extend various techniques that the Rogers’ group has developed over the years for making tiny, yet high performance electronic systems out of ultrathin sheets of silicon. In transient applications, the sheets are so thin that they completely dissolve in a few days when immersed in biofluids. Together with soluble conductors and dielectrics, based on magnesium and magnesium oxide, these materials provide a complete palette for a wide range of electronic components, sensors, wireless transmission systems and more.

SIDEBAR: Want to know more?

The team has built transient transistors, diodes, wireless power coils, temperature and strain sensors, photodetectors, solar cells, radio oscillators and antennas, and even simple digital cameras. All of the materials are biocompatible and, because they are extraordinarily thin, they can dissolve in even minute volumes of water.

The researchers encapsulate the devices in silk. The structure of the silk determines its rate of dissolution – from minutes, to days, weeks or, potentially, years.

“The different applications that we are considering require different operating time frames,” Rogers said. “A medical implant that is designed to deal with potential infections from surgical site incisions is only needed for a couple of weeks. But for a consumer electronic device, you’d want it to stick around at least for a year or two. The ability to use materials science to engineer those time frames becomes a critical aspect in design.”

Since the group uses silicon, the industry standard material for integrated circuits, they can make highly sophisticated devices in ways that exploit well-established designs by introducing just a few additional tricks in layout, manufacturing and supporting materials. As reported in the Sept. 28 issue of the journal Science, the researchers have already demonstrated several system-level devices, including a fully transient 64-pixel digital camera and an implantable applique designed to monitor and prevent bacterial infection at surgical incisions, successfully demonstrated in rats.

Next, the researchers are further refining these and other devices for specific applications, conducting more animal tests, and working with a semiconductor foundry to explore high-volume manufacturing possibilities.

“It’s a new concept, so there are lots of opportunities, many of which we probably have not even identified yet” Rogers said. “We’re very excited. These findings open up entirely new areas of application, and associated directions for research in electronics.”

The Defense Advanced Research Projects Agency supported this work. The Tufts University team was led by Fiorenzo Omenetto; the Northwestern University team was led by Youggang Huang. Rogers is affiliated with the departments of materials science and engineering, of chemistry, of mechanical science and engineering, of bioengineering and of electrical and computer engineering, and with the Beckman Institute for Advanced Science and Technology and the Frederick Seitz Materials Research Laboratory at the U. of I.

Editor’s note: To contact John Rogers, call 217-244-4979; email jrogers@illinois.edu.
The paper, “A Physically Transient Form of Silicon Electronics,” is available from Science.
A downloadable image gallery is available.

Read Next

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Arts Black and white photo of a grand piano sitting in a room with a brick wall lit by the sun in the background.

Krannert Art Museum exhibition shows midcentury modern homes as places for artistic production

CHAMPAIGN, Ill. — Several Champaign-Urbana homes designed by local architects between the 1940s and 1990s were also made as settings for artistic performances and cultural conversations. An exhibition at Krannert Art Museum at the University of Illinois Urbana-Champaign examines how four midcentury modern homes served as incubators for avant-garde culture in the community. “Making Place […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010