Strategic Communications and Marketing News Bureau

New model describes avalanche behavior of superfluid helium

Physics professor Paul Goldbart, right, with postdoctoral research associate Roman Barankov, left, and graduate student David Pekker have constructed a model that describes the avalanche-like, phase-slip cascades in the superflow of helium.

Physics professor Paul Goldbart, right, with postdoctoral research associate Roman Barankov, left, and graduate student David Pekker have constructed a model that describes the avalanche-like, phase-slip cascades in the superflow of helium.

CHAMPAIGN, Ill. – By utilizing ideas developed in disparate fields, from earthquake dynamics to random-field magnets, researchers at the University of Illinois have constructed a model that describes the avalanche-like, phase-slip cascades in the superflow of helium.

Just as superconductors have no electrical resistance, superfluids have no viscosity, and can flow freely. Like superconductors, which can be used to measure extremely tiny magnetic fields, superfluids could create a new class of ultra-sensitive rotation sensors for use in precision guidance systems and other applications.

But, before new sensors can be built, scientists and engineers must first acquire a better understanding of the odd quirks of superfluids arising in these devices.

In the April 23 issue of Physical Review Letters, U. of I. physicist Paul Goldbart, graduate student David Pekker and postdoctoral research associate Roman Barankov describe a model they developed to explain some of those quirks, which were found in recent experiments conducted by researchers at the University of California at Berkeley.

In the Berkeley experiments, physicist Richard Packard and his students Yuki Sato and Emile Hoskinson explored the behavior of superfluid helium when forced to flow from one reservoir to another through an array of several thousand nano-apertures. Their intent was to amplify the feeble whistling sound of phase-slips associated with superfluid helium passing through a single nano-aperture by collecting the sound produced by all of the apertures acting in concert.

At low temperatures, this amplification turned out, however, to be surprisingly weak, because of an unanticipated loss of synchronicity among the apertures.

“Our model reproduces the key physical features of the Berkeley group’s experiments, including a high-temperature synchronous regime, a low-temperature asynchronous regime, and a transition between the two,” said Goldbart, who also is a researcher at the university’s Frederick Seitz Materials Research Laboratory.

The theoretical model developed by Pekker, Barankov and Goldbart balances a competition between interaction and disorder – two behaviors more commonly associated with magnetic materials and sliding tectonic plates.

The main components of the researchers’ model are nano-apertures possessing different temperature-dependent critical flow velocities (the disorder), and inter-aperture coupling mediated by superflow in the reservoirs (the interactions).

For helium, the superfluid state begins at a temperature of 2.18 kelvins. Very close to that temperature, inter-pore coupling tends to cause neighbors of a nano-aperture that already has phase-slipped also to slip. This process may cascade, creating an avalanche of synchronously slipping phases that produces a loud whistle.

However, at roughly one-tenth of a kelvin colder, the differences between the nano-apertures dominate, and the phase-slips in the nano-apertures are asynchronous, yielding a non-avalanching regime. The loss of synchronized behavior weakens the whistle.

“In our model, competition between disorder in critical flow velocities and effective inter-aperture coupling leads to the emergence of rich collective dynamics, including a transition between avalanching and non-avalanching regimes of phase-slips,” Goldbart said. “A key parameter is temperature. Small changes in temperature can lead to large changes in the number of phase-slipping nano-apertures involved in an avalanche.”

The work was funded by the U.S. Department of Energy and the National Science Foundation.

Editor’s note: To reach Paul Goldbart, call 217-333-1195; e-mail: goldbart@illinois.edu.

Read Next

Agriculture Graduate student Andrea Jimena Valdés-Alvarado, left, and food science professor Elvira Gonzalez de Mejia standing in the Edward R. Madigan Laboratory holding samples of the legume pulses they used in the study.

Fermenting legume pulses boosts their antidiabetic, antioxidant properties

CHAMPAIGN, Ill. — Food scientists at the University of Illinois Urbana-Champaign identified the optimal fermentation conditions for pulses ― the dried edible seeds of legumes ― that increased their antioxidant and antidiabetic properties and their soluble protein content. Using the bacteria Lactiplantibacillus plantarum 299v as the microorganism, the team fermented pulses obtained from varying concentrations […]

Expert viewpoints Ukraine’s daring drone attack deep within Russia is significant but not war-redefining, and may hinder U.S. efforts to end the war, says University of Illinois Urbana-Champaign political science professor and international relations expert Nicholas Grossman.

Does Ukraine drone attack inside Russia augur new era of asymmetric warfare?

Champaign, Ill. — University of Illinois Urbana-Champaign political science professor Nicholas Grossman is the author of “Drones and Terrorism: Asymmetric Warfare and the Threat to Global Security” and specializes in international relations. Grossman spoke with News Bureau business and law editor Phil Ciciora about “Operation Spiderweb,” Ukraine’s expertly plotted drone attack inside the Russian mainland. […]

Behind the scenes Photo of a man with his leg lifted and his boot in the foreground, while another man in the foreground reacts.

Staging a fight

CHAMPAIGN, Ill. — A group of theatre students is gathered in a rehearsal room at Krannert Center for the Performing Arts at the University of Illinois Urbana-Champaign. They are each paired with a partner, and I watch as they shove each other in the chest, knee one another in the gut and then punch their […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010