Strategic Communications and Marketing News Bureau

New metric allows researchers to better understand soft material behavior

CHAMPAIGN, Ill. — The mechanics behind the collapse of soft materials structure have befuddled researchers for decades. In a new study, researchers uncover a metric that finally correlates microscopic-level processes with what is seen at the macroscopic level. 

The new metric is poised to help bring advances to various materials engineering challenges – ranging from the formulation of better 3D printing inks, the construction of wearable flexible electronics and sensors, the accurate printing of biomedical implants, to helping control landslides and avalanches, and even improving the textures of processed foods and personal care products, the researchers said.

A team of chemical engineers from the University of Illinois Urbana-Champaign has made many advances in understanding how soft materials fail – or yield – to force. However, connecting the team’s larger-scale observations to what is happening at the microscale level has remained elusive.

In the study, researchers at U. of I., collaborating with teams at Argonne National Laboratory, Johns Hopkins University and the University of Ottawa, explain this relationship with a new metric they call a “correlation ratio.”

Researchers Simon Rogers and Gavin Donely standing outside of thier lab at the University of Illinois

Professor Simon Rogers, left, and former Illinois graduate student Gavin Donley.

The findings are published in the Proceedings of the National Academy of Sciences.

The team used a high-powered microscopy technique – called rheo- X-ray photon correlation spectroscopy – to study flow-dependent structure-property relationships and soft materials in real time. 

Rheo-XPCS is one of the few techniques that allow researchers to perform X-ray analysis of a material as it is being deformed, while simultaneously measuring it using rheometers – devices that measure stress and strain – directly in line with an X-ray beam, the researchers said.

“From a materials science perspective, we have not been able to distinguish when a material changes from behaving like a solid to a liquid at the microstructural scale,” said Illinois chemical and biomolecular engineering professor Simon Rogers, who led the project. “The Rheo-XPCS at Argonne National Lab gives us an unprecedented peek at the microscale behavior of soft materials yielding to stress.”

In the lab, the team worked with a material called soft colloidal glass, which is a disordered system of nanoparticles made of silica. 

“We call it a soft material because the interparticle interactions cause it to be sort of squishy – like having a bunch of water balloons pushed together to form a material,” said Gavin Donley, the first author of the study and  former Illinois graduate student now at Georgetown University. “We used this specific material because it provides a strong X-ray signal that we can record while we perform simultaneous macroscopic measurements.” 

This technique allowed the researchers to finally witness the direct connection between microscopic displacements and macroscopic behavior, allowing them to define the behavior using mathematical terms. 

“Getting down to the nuts and bolts of this problem is a step forward so that future researchers that want to design new soft materials can do so by tweaking various microscale parameters to get a desired macroscale property,” Donely said. “We’re not quite there yet, but we have shown a clearly-defined mathematical correlation between the micro- and macroscale.”

The Department of Energy, the National Science Foundation and the Natural Sciences and Engineering Research Council of Canada supported the research. 

Editor’s notes

To reach Simon Rogers, call 217-333-0020; email sarogers@illinois.edu

The paper “Investigation of the yielding transition in concentrated colloidal systems via rheo-XPCS” is available online. DOI: 10.1073/pnas.2215517120

Read Next

Life sciences Photo of Michael Ward standing in tall grass on a riverbank.

How are migrating wild birds affected by H5N1 infection in the U.S.?

Each spring, roughly 3.5 billion wild birds migrate from their warm winter havens to their breeding grounds across North America, eating insects, distributing plant seeds and providing a variety of other ecosystem services to stopping sites along the way. Some also carry diseases like avian influenza, a worry for agricultural, environmental and public health authorities. […]

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010