Strategic Communications and Marketing News Bureau

New metric allows researchers to better understand soft material behavior

CHAMPAIGN, Ill. — The mechanics behind the collapse of soft materials structure have befuddled researchers for decades. In a new study, researchers uncover a metric that finally correlates microscopic-level processes with what is seen at the macroscopic level. 

The new metric is poised to help bring advances to various materials engineering challenges – ranging from the formulation of better 3D printing inks, the construction of wearable flexible electronics and sensors, the accurate printing of biomedical implants, to helping control landslides and avalanches, and even improving the textures of processed foods and personal care products, the researchers said.

A team of chemical engineers from the University of Illinois Urbana-Champaign has made many advances in understanding how soft materials fail – or yield – to force. However, connecting the team’s larger-scale observations to what is happening at the microscale level has remained elusive.

In the study, researchers at U. of I., collaborating with teams at Argonne National Laboratory, Johns Hopkins University and the University of Ottawa, explain this relationship with a new metric they call a “correlation ratio.”

Researchers Simon Rogers and Gavin Donely standing outside of thier lab at the University of Illinois

Professor Simon Rogers, left, and former Illinois graduate student Gavin Donley.

The findings are published in the Proceedings of the National Academy of Sciences.

The team used a high-powered microscopy technique – called rheo- X-ray photon correlation spectroscopy – to study flow-dependent structure-property relationships and soft materials in real time. 

Rheo-XPCS is one of the few techniques that allow researchers to perform X-ray analysis of a material as it is being deformed, while simultaneously measuring it using rheometers – devices that measure stress and strain – directly in line with an X-ray beam, the researchers said.

“From a materials science perspective, we have not been able to distinguish when a material changes from behaving like a solid to a liquid at the microstructural scale,” said Illinois chemical and biomolecular engineering professor Simon Rogers, who led the project. “The Rheo-XPCS at Argonne National Lab gives us an unprecedented peek at the microscale behavior of soft materials yielding to stress.”

In the lab, the team worked with a material called soft colloidal glass, which is a disordered system of nanoparticles made of silica. 

“We call it a soft material because the interparticle interactions cause it to be sort of squishy – like having a bunch of water balloons pushed together to form a material,” said Gavin Donley, the first author of the study and  former Illinois graduate student now at Georgetown University. “We used this specific material because it provides a strong X-ray signal that we can record while we perform simultaneous macroscopic measurements.” 

This technique allowed the researchers to finally witness the direct connection between microscopic displacements and macroscopic behavior, allowing them to define the behavior using mathematical terms. 

“Getting down to the nuts and bolts of this problem is a step forward so that future researchers that want to design new soft materials can do so by tweaking various microscale parameters to get a desired macroscale property,” Donely said. “We’re not quite there yet, but we have shown a clearly-defined mathematical correlation between the micro- and macroscale.”

The Department of Energy, the National Science Foundation and the Natural Sciences and Engineering Research Council of Canada supported the research. 

Editor’s notes

To reach Simon Rogers, call 217-333-0020; email sarogers@illinois.edu

The paper “Investigation of the yielding transition in concentrated colloidal systems via rheo-XPCS” is available online. DOI: 10.1073/pnas.2215517120

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010