Strategic Communications and Marketing News Bureau

New material structure produces world’s fastest transistor

Milton Feng, the Holonyak Professor of Electrical and Computer Engineering and a researcher at the Coordinated Science Laboratory at Illinois, has broken the 600 gigahertz speed barrier in a new type of transistor structure.

Milton Feng, the Holonyak Professor of Electrical and Computer Engineering and a researcher at the Coordinated Science Laboratory at Illinois, has broken the 600 gigahertz speed barrier in a new type of transistor structure.

CHAMPAIGN, Ill. – A new type of transistor structure, invented by scientists at the University of Illinois at Urbana-Champaign, has broken the 600 gigahertz speed barrier. The goal of a terahertz transistor for high-speed computing and communications applications could now be within reach.

The new device – built from indium phosphide and indium gallium arsenide – is designed with a compositionally graded collector, base and emitter to reduce transit time and improve current density. With their pseudomorphic heterojunction bipolar transistor, the researchers have demonstrated a speed of 604 gigahertz – the fastest transistor operation to date.

“Pseudomorphic grading of the material structure allows us to lower the bandgap in selected areas,” said Milton Feng, the Holonyak Professor of Electrical and Computer Engineering and a researcher at the Coordinated Science Laboratory at Illinois. “This permits faster electron flow in the collector. The compositional grading of the transistor components also improves current density and signal charging time.”

Feng and graduate student Walid Hafez fabricated the new device in the university’s Micro and Nanotechnology Laboratory. They describe the pseudomorphic HBT concept, and discuss the transistor’s high-speed operation, in the April 11 issue of the journal Applied Physics Letters.

The goal of a terahertz transistor was not possible using the previous device structure, Feng said. “To achieve such speed in a typical HBT, the current density would become so large it would melt the components. In our pseudomorphic HBT, we can operate at higher frequencies with less current density. With this new material structure, a terahertz transistor is achievable.”

Faster transistors could facilitate faster computers, more flexible and secure wireless communications systems, and more effective electronic combat systems.

Editor’s note: To reach Milton Feng, call 217-333-8080; e-mail: mfeng@illinois.edu.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010