Strategic Communications and Marketing News Bureau

New drug agent knocks out multiple enzymes in cancer pathway

CHAMPAIGN, lll. – A team of 24 researchers from the U.S., Europe, Taiwan and Japan and led by University of Illinois scientists has engineered a new anti-cancer agent that is about 200 times more active in killing tumor cells than similar drugs used in recent clinical trials. The study appears this week in the Journal of the American Chemical Society.

The new agent belongs to a class of drugs called bisphosphonates. These compounds were originally developed to treat osteoporosis and other bone diseases, but were recently found to also have potent anti-cancer and immune boosting properties.

Drug developers have tried for years to design drugs to inhibit cell survival pathways in tumor cells, focusing on a protein called Ras since nearly a third of all human cancers involve a mutation in the Ras gene that causes cell signaling to go awry. These efforts have met with limited success.

Bisphosphonates act on other enzymes, called FPPS and GGPPS, which are upstream of Ras in the cell survival pathway. Inhibiting these enzymes appears to be a more effective strategy for killing cancer cells.

When used in combination with hormone therapy in a recent clinical trial, the bisphosphonate drug zoledronate significantly reduced the recurrence of breast cancer in premenopausal women with estrogen-receptor-positive breast cancer. Similar results were reported previously for hormone-refractory prostate cancer.

But zoledronate quickly binds to bone, reducing its efficacy in other tissues.

“We’re trying to develop bisphosphonates that will be very active but won’t bind to the bone, because if they bind to the bone they’re not going to go to breast, lung or other tissues,” said University of Illinois chemistry professor Eric Oldfield, who led the new study.

Oldfield’s team also wanted to design a compound that would inhibit multiple enzymes in the tumor cell survival pathway, rather than just one, an approach analogous to the use of multi-kinase inhibitors in cancer therapy.

Andrew Wang, of Academia Sinica, Taipei, and Illinois chemist Rong Cao began by producing crystallographic structures of the target enzymes and drug candidates, allowing the researchers to identify those features that would enhance the drugs’ ability to bind to the enzymes. Using this and other chemical data, Illinois chemistry department research scientist Yonghui Zhang engineered new bisphosphonate compounds that bound tightly to multiple enzyme targets, but not to bone.

One of the new compounds, called BPH-715, proved to be especially potent in cell culture and effectively inhibited tumor cell growth and invasiveness.

Tadahiko Kubo, of Hiroshima University, then found that BPH-715 also killed tumor cells in mice. And Socrates Papapoulos, of Leiden University, the Netherlands, showed that the compound had a very low chemical affinity for bone.

In humans, compounds like BPH-715 and zoledronate have an added benefit in fighting cancer: They spur the proliferation of immune cells called gamma delta T-cells, which aid in killing tumor cells.

“The new drugs are about 200 times more effective than the drugs used in recent clinical trials at killing tumor cells and in activating gamma delta T-cells to kill tumor cells,” Oldfield said. “They also prevent tumor progression in mice much better than do existing bisphosphonate molecules.”

Editor’s note: To contact Eric Oldfield, call 217-333-3374; e-mail: eoldfiel@illinois.edu.

Read Next

Announcements Graphic says: 2025 Highly Cited Researchers. Background is orange with an image of journal articles stacked and open.

Twelve Illinois scientists rank among the world’s most influential

CHAMPAIGN, Ill. — Twelve scientists at the University of Illinois Urbana-Champaign have been named to the 2025 Clarivate Analytics Highly Cited Researchers list. The list recognizes researchers and social scientists who have demonstrated exceptional influence, as reflected through their publication of multiple papers frequently cited by their peers during the last decade. The highly cited […]

Engineering A tilted view of miscellaneous of multicolored used batteries.

Study shows new hope for commercially attractive lithium extraction from spent batteries

A new study shows that lithium — a critical element used in rechargeable batteries and susceptible to supply chain disruption — can be recovered from battery waste using an electrochemically driven recovery process. The method has been tested on commonly used types of lithium-containing batteries and demonstrates economic viability with the potential to simplify operations, minimize costs and increase the sustainability and attractiveness of the recovery process for commercial use.

Health and Medicine Research team in the lab.

Study: A cellular protein, FGD3, boosts breast cancer chemotherapy, immunotherapy

CHAMPAIGN, Ill. — A naturally occurring protein that tends to be expressed at higher levels in breast cancer cells boosts the effectiveness of some anticancer agents, including doxorubicin, one of the most widely used chemotherapies, and a preclinical drug known as ErSO, researchers report. The protein, FGD3, contributes to the rupture of cancer cells disrupted […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010