Strategic Communications and Marketing News Bureau

New CRISPR technology ‘knocks out’ yeast genes with single-point precision

CHAMPAIGN, Ill. — The CRISPR-Cas9 system has given researchers the power to precisely edit selected genes. Now, researchers have used it to develop a technology that can target any gene in the yeast Saccharomyces cerevisiae and turn it off by deleting single letters from its DNA sequence.

Such genome-scale engineering – in contrast to traditional strategies that only target a single gene or a limited number of genes – allows researchers to study the role of each gene individually, as well as in combination with other genes. It also could be useful for industry, where S. cerevisiae is widely used to produce ethanol, industrial chemicals, lubricants, pharmaceuticals and more.

Understanding and optimizing the genome could create yeast strains with increased productivity, said study leader Huimin Zhao, a University of Illinois professor of chemical and biomolecular engineering and a member of the Carl R. Woese Institute for Genomic Biology at the U. of I. Zhao’s group published the new findings in the journal Nature Biotechnology.

“We want to use microorganisms as cellular factories to make valuable chemicals and biofuels,” Zhao said. “The scale we have demonstrated in this study is unprecedented. CRISPR has been used to introduce point mutations – for example, to address genetic diseases – but Saccharomyces yeast has about 6,000 genes, and we want to be able to knock out each of these genes iteratively and find out how they affect the production of a target compound.”

Researchers produce “knockout” yeast – where one gene has been deleted, or “knocked out” – to study how each gene contributes to the function of the cell. When a beneficial mutation is found, they can selectively breed yeast with that characteristic. Leading methods to produce knockout yeast excise the entirety of the targeted gene. This creates unintended problems, Zhao said, because many genes overlap each other. Deleting one gene also deletes portions of others, affecting multiple functions and making it difficult for researchers to truly isolate the effects of a single gene.

Each letter in a DNA sequence corresponds to a base, the building blocks that make up DNA chains. Zhao’s group harnessed the precision of the CRISPR-Cas9 system to create a technique that allows them to delete just one base in a gene’s DNA sequence. Since a cell “reads” DNA three bases at a time, this shifts the reading frame and knocks out the gene. Genes that overlap with the edited one remain unchanged and functional.

  “We can introduce just one single base change on the entire chromosome. That makes a minimal disturbance in the function of the neighboring genes, so we can study how important the gene is in its cellular context. That kind of precision has not been achieved before,” Zhao said.

Their technique, named CRISPR/Cas9 and homology-directed-repair assisted genome-scale engineering or CHAnGE, has the advantages of being quick, efficient and low-cost, in addition to its precision. Zhao’s group developed a library of knockout yeast, one for each gene in the S. cerevisiae genome, and are making it available to other researchers for a $50 handling fee.

“In the past, teams of people would spend several years trying to knock out every gene in a yeast. With CHAnGE, one person can generate a library of yeast mutants covering the entire genome in about a month,” Zhao said.

Zhao’s group is working to develop libraries for other types of yeast, including ones that produce lipids used in lubricants, biofuels and other industrial applications.

The U.S. Department of Energy and the Carl R. Woese Institute for Genomic Biology at the U. of I. supported this work. Zhao is also a professor in the Carle Illinois College of Medicine at Illinois.

Editor’s notes: To reach Huimin Zhao, call (217)333-2631; email: zhao5@illinois.edu.

The paper “Genome-scale engineering of Saccharomyces cerevisiae with single nucleotide precision” is available online. DOI: 10.1038/nbt4132

Read Next

Education Photo of professors Bill Cope, standing outside the education building, and Walter Feinberg, seated in his office.

New book explores the U of I scholars, ideas that made history in education

CHAMPAIGN, Ill. ― A new book examines the ideas that shaped teaching practices and student learning across the past century and the innovative University of Illinois Urbana-Champaign scholars behind them. “Arguments for Learning: An Intellectual History of the College of Education at the University of Illinois,” co-written by education policy, organization and leadership professor Bill […]

Announcements Illinois Chancellor Robert J. Jones

Illinois Chancellor Robert J. Jones named 2025 Commencement speaker

Illinois Chancellor Robert J. Jones will be the 2025 Commencement speaker.

Agriculture Photo portrait of Lowell Gentry

Study: ‘Sustainable intensification’ on the farm reduces soil nitrate losses, maintains crop yields

CHAMPAIGN, Ill. — A nine-year study comparing a typical two-year corn and soybean rotation with a more intensive three-year rotation involving corn, cereal rye, soybean and winter wheat found that the three-year system can dramatically reduce nitrogen — an important crop nutrient — in farm runoff without compromising yield. The new findings are detailed in […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010