Strategic Communications and Marketing News Bureau

New compounds block master regulator of cancer growth, metastasis

CHAMPAIGN, Ill. — Scientists have developed new drug compounds that thwart the pro-cancer activity of FOXM1, a transcription factor that regulates the activity of dozens of genes. The new compounds suppress tumor growth in human cells and in mouse models of several types of human breast cancer.

The researchers report their findings in the journal NPJ Breast Cancer.

FOXM1 is a naturally occurring protein that ramps up the expression of genes that are important to cell proliferation and development. It plays an important role during early development, but normally is present only at very low levels in adult tissues.  

The researchers focused on FOXM1 because it is found in higher abundance in cancer cells than in healthy human cells, said Benita Katzenellenbogen, a University of Illinois professor of molecular and integrative physiology who led the study with U. of I. chemistry professor John Katzenellenbogen and life sciences research specialist Yvonne Ziegler.

“FOXM1 is a key factor that makes breast cancer and many other cancers more aggressive and more difficult to treat,” Benita Katzenellenbogen said. “Because it is a master regulator of cancer growth and metastasis, there has been great interest in developing compounds that would be effective in blocking it.”

So far, no successful drug agents have been developed to reduce the effects of FOXM1, John Katzenellenbogen said.

“There are reports of other inhibitors of FOXM1, but these are generally less potent and do not work well in the body,” he said. “Our compounds have good anti-tumor activity in animal models. They behave well in vivo and have long half-lives in the blood. Some work well when given orally, which is desirable for ultimate patient use.”

The researchers developed the new drugs by analyzing the properties of various compounds in a chemical library of potentially therapeutic agents. They selected those that reduced breast cancer cell proliferation and inhibited the expression of genes known to be regulated by FOXM1.

The team then modified the compounds to enhance their inhibition of FOXM1 and increase their cellular potency. Three of the tested compounds performed best.

“We found that these compounds inhibit the growth of breast cancer cells that represent the major subtypes of breast cancers, including estrogen receptor-positive, HER2-positive and triple-negative breast cancers,” Benita Katzenellenbogen said. “They also block the growth of human breast tumors in mouse models.”

The research is promising, but preliminary, the scientists said. Full development of new anti-cancer drug agents can take more than a decade from this stage of discovery.

“Because cancers are often treated with a combination of drugs, we are exploring how our FOXM1 inhibitors might be combined with other standard-of-care agents to improve cancer treatment,” Benita Katzenellenbogen said.

The Breast Cancer Research Foundation, the Julius and Mary Landfield Cancer Research Fund, the National Institutes of Health and the National Institute of Food and Agriculture at the U.S. Department of Agriculture supported this research.

Editor’s notes:
To reach Benita Katzenellenbogen, call 217-333-9769; email katzenel@illinois.edu.  
To reach John Katzenellenbogen, call 217-333-6310; email jkatzene@illinois.edu.  

The paper “Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds” is available online and from the U. of I. News Bureau.

DOI: 10.1038/s41523-019-0141-7

Read Next

Humanities Diptych image with book cover of "The New Internationals" and a headshot of English professor David Wright Faladé

English professor’s novel tells of love triangle in post-WWII Paris, based on his family history

CHAMPAIGN, Ill. — A new novel by University of Illinois Urbana-Champaign English professor David Wright Faladé tells the story of three people in a love triangle in post-World War II Paris. The characters in “The New Internationals” — a young French woman who has survived the Holocaust, a university student from West Africa and a […]

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010