Strategic Communications and Marketing News Bureau

New approach drives bacteria to produce potential antibiotic, antiparasitic compounds

A portrait of U. of I. biochemistry professor Satish Nair in his office.

U. of I. biochemistry professor Satish Nair and his colleagues found a way to spur bacteria to produce antibiotics and other compounds in the lab.

CHAMPAIGN, Ill. — Researchers have developed a method to spur the production of new antibiotic or antiparasitic compounds hiding in the genomes of actinobacteria, which are the source of drugs such as actinomycin and streptomycin and are known to harbor other untapped chemical riches. The scientists report their findings in the journal eLife.

The researchers wanted to overcome a decades-old problem that confronts those hoping to study and make use of the countless antibiotic, antifungal and antiparasitic compounds that bacteria can produce, said Satish Nair, a University of Illinois at Urbana-Champaign professor of biochemistry who led the research.

“In laboratory conditions, bacteria don’t make the number of molecules they have the capability of making,” he said. “And that’s because many are regulated by small-molecule hormones that aren’t produced unless the bacteria are under threat.”

Nair and his colleagues wanted to determine how such hormones influence the production of antibiotics in actinobacteria. By exposing their bacteria to the right hormone or combination of hormones, the researchers hope to spur the microbes to produce new compounds that are medically useful.

The team focused on avenolide, a hormone that is more chemically stable than one used in earlier studies of bacterial hormones. Avenolide regulates the production of an antiparasitic compound known as avermectin in a soil microbe. A chemically modified version of this compound, ivermectin, is used as a treatment for river blindness, a disease transmitted by flies that blinded millions of people, mostly in sub-Saharan Africa, before the drug was developed.

 For the new study, chemistry graduate student Iti Kapoor developed a more streamlined process for synthesizing avenolide in the lab than was previously available. This allowed the team to study the hormone’s interactions with its receptor both inside and outside bacterial cells.

“Using a method called X-ray crystallography, Iti and biochemistry graduate student Philip Olivares were able to determine how the hormone binds to its receptor and how the receptor binds to the DNA in the absence of hormones,” Nair said. “Typically, these receptors sit on the genome and they basically act as brakes.”

The researchers discovered that when the hormone binds to it, the receptor loses its ability to cling to DNA. This turns off the brakes, allowing the organism to churn out defensive compounds like antibiotics.

Knowing which regions of the receptor are involved in binding to the hormone and to the DNA enabled the team to scan the genomes of dozens of actinobacteria to find sequences that had the right traits to bind to their receptor or to similar receptors. This process, called genome mining, allowed the team to identify 90 actinobacteria that appear to be regulated by avenolide or other hormones in the same class.

“Our long-term project is to take those 90 bacteria, grow them up in the laboratory, add chemically synthesized hormones to them and see what new molecules are being produced,” Nair said. “The beauty of our approach is that we can now get the bacteria to produce large quantities of molecules that normally we would not be able to make in the lab.”

Some of these new compounds are likely to have medical relevance, he said.

The National Institutes of Health supports this research.

Editor’s notes
To reach Satish Nair, email snair@illinois.edu.  
The paper “Biochemical basis for the regulation of biosynthesis of antiparasitics by bacterial hormones” is available online and from the U. of I. News Bureau.
DOI: 10.7554/eLife.57824

 

Read Next

Humanities Diptych image with book cover of "The New Internationals" and a headshot of English professor David Wright Faladé

English professor’s novel tells of love triangle in post-WWII Paris, based on his family history

CHAMPAIGN, Ill. — A new novel by University of Illinois Urbana-Champaign English professor David Wright Faladé tells the story of three people in a love triangle in post-World War II Paris. The characters in “The New Internationals” — a young French woman who has survived the Holocaust, a university student from West Africa and a […]

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010