Strategic Communications and Marketing News Bureau

New antifungal molecule kills fungi without toxicity in human cells, mice

CHAMPAIGN, Ill. — A new antifungal molecule, devised by tweaking the structure of prominent antifungal drug Amphotericin B, has the potential to harness the drug’s power against fungal infections while doing away with its toxicity, researchers at the University of Illinois Urbana-Champaign and collaborators at the University of Wisconsin-Madison report in the journal Nature.

Amphotericin B, a naturally occurring small molecule produced by bacteria, is a drug used as a last resort to treat fungal infections. While AmB excels at killing fungi, it is reserved as a last line of defense because it also is toxic to the human patient – particularly the kidneys. 

“Fungal infections are a public health crisis that is only getting worse. And they have the potential, unfortunately, of breaking out and having an exponential impact, kind of like COVID-19 did. So let’s take one of the powerful tools that nature developed to combat fungi and turn it into a powerful ally,” said research leader Dr. Martin D. Burke, an Illinois professor of chemistry, a professor in the Carle Illinois College of Medicine and also a medical doctor. 

“This work is a demonstration that, by going deep into the fundamental science, you can take a billion-year head start from nature and turn it into something that hopefully is going to have a big impact on human health,” Burke said. 

Burke’s group has spent years exploring AmB in hopes of making a derivative that can kill fungi without harm to humans. In previous studies, they developed and leveraged a building block-based approach to molecular synthesis and teamed up with a group specializing in molecular imaging tools called solid-state nuclear magnetic resonance, led by professor Chad Rienstra at the University of Wisconsin-Madison. Together, the teams uncovered the mechanism of the drug: AmB kills fungi by acting like a sponge to extract ergosterol from fungal cells. 

In the new work, Burke’s group worked again with Rienstra’s group to find that AmB similarly kills human kidney cells by extracting cholesterol, the most common sterol in people. The researchers also resolved the atomic-level structure of AmB sponges when bound to both ergosterol and to cholesterol. 

“The atomic resolution models were really the key to zoom in and identify these very subtle differences in binding interactions between AmB and each of these sterols,” said Illinois graduate student Corinne Soutar, a co-first author of the paper. 

“Using this structural information along with functional and computational studies, we achieved a significant breakthrough in understanding how AmB functions as a potent fungicidal drug,” Rienstra said. “This provided the insights to modify AmB and tune its binding properties, reducing its interaction with cholesterol and thereby reducing the toxicity.” 

Three researchers work in a lab.

The researchers put promising candidates through extensive testing for efficacy and toxicity, both in vitro and in vivo. Pictured, from left: Arun Maji, Agnieszka Lewandowska and Corinne Soutar.

Armed with the information from the NMR studies, the Illinois team began synthesizing and testing derivatives with slight changes to the region that binds to ergosterol and cholesterol, while also boosting the kinetics of the ergosterol-removing process to maintain efficacy. 

Enabled by collaborators and facilities at the Carl R. Woese Institute for Genomic Biology and U. of I. veterinary clinical medicine professor Dr. Timothy Fan, the researchers tested the most promising derivatives – first with in vitro assays, quickly assessing the efficacy in killing fungi; then moving to cell cultures and eventually live mice, assessing toxicity. 

One molecule, dubbed AM-2-19, stood out from the rest. 

Arun Maji looks at a test tube he is holding.

AM-2-19 stands for Arun Maji, lab notebook 2, page 19. “If I’d known, I would have called it something else,” Maji said. 

“This molecule is kidney-sparing, it is resistance evasive and it has broad spectrum efficacy,” said postdoctoral researcher Arun Maji, a co-first author of the paper. “We tested this molecule against over 500 different clinically relevant pathogen species in four different locations. And this molecule completely surprised us by either mimicking or surpassing the efficacy of current clinically available antifungal drugs.”

The researchers tested AM-2-19 in human blood and kidney cells to screen for toxicity. They also tested AM-2-19 in mouse models of three common, stubborn fungal infections and saw high efficacy.

“During my medical rotations, we called AmB ‘ampho-terrible,’ because of how hard it was on patients,” Burke said. “Decoupling the efficacy from the toxicity turns ‘ampho-terrible’ into ‘ampho-terrific.’ We are very excited about the potential we are seeing, although clinical study is needed to see if this potential translates to people.” 

As a first step toward clinical application, AM-2-19 has been licensed to Sfunga Therapeutics and recently entered Phase 1 clinical trials. Sfunga Therapeutics also supported the work in part, and Burke received consulting income and equity in the company.

Taras Pogorelov

Chemistry professor Taras Pogorelov also was a coauthor of the work.

The National Institutes of Health supported this work. Illinois chemistry professor Taras Pogorelov also was a coauthor of the work. Fan also is affiliated with the Carle Illinois College of Medicine and the Cancer Center at Illinois. Burke and Pogorelov are affiliated with the Beckman Institute for Advanced Science and Technology.  

Editor’s notes: To reach Martin Burke, email: mdburke@illinois.edu.  

The paper “Tuning sterol extraction kinetics yields a renal sparing polyene antifungal” is available online. DOI: 10.1038/s41586-023-06710-4
 
The National Institutes of Health supported this work under grants 5R01-AI135812-04, R35-GM118185, R01-GM112845 and R01-GM123455, R01-AI063503 and P41-GM136463.

Competing interests: A.M., J. Z., S.Y., C.M.R. and M.D.B are inventors on patents PCT/US20/45566, PCT/US20/45399, PCT/US 2021/45205, PCT/US2020/45387 and/or UIUC2022-022-01, submitted by the U. of I. 
 M.D.B and K.A.M disclose consulting income and equity in Sfunga Therapeutics.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010