Strategic Communications and Marketing News Bureau

New algorithm speeds simulations of complex fluids

CHAMPAIGN, Ill. – Computer simulations play an essential role in the study of complex fluids – liquids that contain particles of different sizes. Such liquids have numerous applications, which depend on a fundamental understanding of their behavior. But the two main techniques for the atomistic simulation of liquids – the molecular dynamics technique and the Monte Carlo method – have limitations that greatly reduce their effectiveness.

As reported in the Jan. 23 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have developed a geometric cluster algorithm that makes possible the fast and accurate simulation of complex fluids.

“The main advantage of the molecular dynamics method – its ability to provide information about dynamical processes – is also its main limitation,” said Erik Luijten, a professor of materials science and engineering at Illinois. “Many complex fluids contain particles of widely different sizes, which move at vastly different time scales. A simulation that faithfully captures the motions of the faster as well as the slower particles would be impractically slow.”

By contrast, the Monte Carlo method can circumvent the disparity in time scales, since it is designed to extract equilibrium properties without necessarily reproducing the actual physical motion of the atoms or molecules. However, attempts to create appropriate “artificial motion” have been limited to ad hoc solutions for specific situations. Thus, a Monte Carlo method capable of efficiently simulating systems containing particles of different sizes has remained a widely pursued goal.

Luijten and graduate student Jiwen Liu have resolved this issue in a very general way by creating artificial movements of entire clusters of particles. The identification of appropriate clusters is a crucial component of the simulation.

In 1987, researchers at Carnegie Mellon University resolved a similar problem for magnetic materials by simultaneously flipping entire groups (or clusters) of magnetic spins. This finding, which relied on an intricate mathematical mapping dating back to the early 1970s, greatly accelerated calculations for model magnets. Many researchers realized that a similar approach would have an even bigger impact if it could be applied to fluids.

“Thus, a cluster algorithm for the simulation of fluids became a ‘Holy Grail’ for scientists studying fluids by means of computer simulations,” Luijten said. “However, magnetic materials possess a symmetry that is absent in fluids, making it apparently impossible to use the ideas that were so

successful in magnets.”

Exploiting an idea developed for mixtures of spheres, Luijten and Liu were able to reconcile the asymmetric nature of fluids with the mathematical foundations underlying the identification of clusters.

Their simulation method utilizes a geometric cluster algorithm that identifies “natural” groups of particles on the basis of the elementary forces that act between the particles. This approach greatly accelerates the simulation of complex fluids. Indeed, the greater the disparity in size between particles, the more advantageous their method becomes.

“This algorithm provides us with a new tool to study fluids that were not previously accessible by simulations,” Luijten said. “It has the potential to advance our understanding of a great variety of liquid systems.”

The U.S. Department of Energy and the National Science Foundation funded the work.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010