Strategic Communications and Marketing News Bureau

Nanowires could be solution for high- performance solar cells

CHAMPAIGN, Ill. – Tiny wires could help engineers realize high-performance solar cells and other electronics, according to University of Illinois researchers.

Professor Xiuling Li's group developed a method for growing semiconductor nanowires on silicon wafers that holds promise for advanced device applications, including solar cells.

Professor Xiuling Li’s group developed a method for growing semiconductor nanowires on silicon wafers that holds promise for advanced device applications, including solar cells.

The research group, led by electrical and computer engineering professor Xiuling Li, developed a technique to integrate compound semiconductor nanowires on silicon wafers, overcoming key challenges in device production. The team published its results in the journal Nano Letters.

Semiconductors in the III-V (pronounced three-five) group are promising for devices that change light to electricity and vice-versa, such as high-end solar cells or lasers. However, they don’t integrate with silicon seamlessly, which is a problem since silicon is the most ubiquitous device platform. Each material has a specific distance between the atoms in the crystal, known as the lattice constant.

“The biggest challenge has been that III-V semiconductors and silicon do not have the same lattice constants,” Li said. “They cannot be stacked on top of each other in a straightforward way without generating dislocations, which can be thought of as atomic scale cracks.”

When the crystal lattices don’t line up, there is a mismatch between the materials. Researchers usually deposit III-V materials on top of silicon wafers in a thin film that covers the wafer, but the mismatch causes strain and introduces defects, degrading the device performance.

Instead of a thin film, the Illinois team grew a densely packed array of nanowires, tiny strands of III-V semiconductor that grow up vertically from the silicon wafer.

“The nanowire geometry offers a lot more freedom from lattice-matching restrictions by dissipating the mismatch strain energy laterally through the sidewalls,” Li said.

The researchers found conditions for growing nanowires of various compositions of the III-V semiconductor indium gallium arsenide. Their methodology has the advantages of using a common growth technique without the need for any special treatments or patterning on the silicon wafer or the metal catalysts that are often needed for such reactions.

The nanowire geometry provides the additional benefit of enhancing solar cell performance through greater light absorption and carrier collection efficiency. The nanowire approach also uses less material than thin films, reducing the cost.

“This work represents the first report on ternary semiconductor nanowire arrays grown on silicon substrates, that are truly epitaxial, controllable in size and doping, high aspect ratio, non-tapered, and broadly tunable in energy for practical device integration,” said Li, who is affiliated with the Micro and Nanotechnology Laboratory, the Frederick Seitz Materials Research Laboratory and the Beckman Institute for Advanced Science and Technology at the U. of I.

Li believes the nanowire approach could be applied broadly to other semiconductors, enabling other applications that have been deterred by mismatch concerns. Next, Li and her group hope soon to demonstrate nanowire-based multi-junction tandem solar cells with high quality and efficiency.

The Department of Energy and the National Science Foundation supported this work. Other faculty involved in the project are materials science and engineering professors Jian-Min Zuo and John A. Rogers at the U. of I., and professor Cun-Zeng Ning, at Arizona State University. Jae Cheol Shin, a former postdoctoral researcher with Li, is the first author.

Editor’s note: To contact Xiuling Li, call 217-265-6354; email xiuling@illinois.edu.
The paper, “InxGa1-xAs Nanowires on Silicon: One-Dimensional Heterogeneous Epitaxy, Bandgap Engineering, and Photovoltaics,” is available online.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010