Strategic Communications and Marketing News Bureau

Mouse model reveals liver involvement in muscular dystrophy

CHAMPAIGN, Ill. — A new mouse model mimicking the liver symptoms of myotonic dystrophy type 1 — the most prevalent form of adult-onset muscular dystrophy — provides insight into why patients develop fatty liver disease and display hypersensitivity to medications, making treatment difficult. The new model opens avenues for screening new medications for liver toxicity prior to patient trials, University of Illinois Urbana-Champaign researchers said.

Led by U. of I. biochemistry professor Auinash Kalsotra, the researchers published their findings in the journal Nature Communications. 

“This disease is not only a muscle disease; it’s a multisystemic disease. The mutated gene is in every cell,” Kalsotra said. “Most research has been focused on the muscle, or tying other symptoms to the muscle, and treatment development has been concerned with how to get therapeutics into the muscle. But most drugs go directly through the liver first. When new therapeutics for this disease go into trials, many show liver toxicity. So we need to understand what is happening in the liver.” 

Illinois researchers developed a mouse model of muscular dystrophy that reveals the liver’s involvement in the disease. Pictured, from left: Prof. Nash Kalsotra, Jessica Derham, Haneui Bae and Oluwafolajimi Adesanya. Photo by Fred Zwicky 

The disease is caused by a mutation in the DMPK gene. A three-letter sequence of CTG is repeated from dozens up to thousands of times. Although it is on a section that does not code for a protein, it is translated into toxic RNA that accumulates in cell nuclei. The repeating sequence causes the RNA to form tight hairpin loops, a structure that binds to and interferes with a class of RNA-binding proteins that regulate how other RNAs and proteins are spliced together. 

Researchers have developed mouse models of the disease that produce the toxic RNA in their muscles, but none have ever targeted the liver, Kalsotra said. His team, led by graduate student Zachary Dewald, developed a line of mice that make the toxic RNA specifically in their liver cells. These mice displayed the same fatty liver symptoms and hypersensitivity to drugs often seen in human patients with myotonic dystrophy.

Zachary Dewald is the first author of the study.
Photo by Christine des Garennes

“It’s well known in the field of myotonic dystrophy that if a patient comes in for surgery, you cannot use regular anesthetics at regular dosages, because they may not wake up. But again, people thought that the sensitivity to these anesthetics and other drugs was being driven by the muscle tissue,” Kalsotra said. “Yet our mice, with the mutation only being expressed in liver cells and no other cell type, showed the sensitivity when we challenged them with various drugs. So we were very excited that by driving the disease in the liver, we now can see the liver effects on both the development of fatty liver and drug metabolism.”

While searching for the mechanism of why the toxic RNA results in fatty liver disease, the researchers found that a gene regulating fat synthesis, ACC-1, is misspliced and upregulated in the affected livers. They treated the mice with ACC-1 inhibitors and splicing correctors.

“We saw that just 10 days of treatment was able to reduce the lipid accumulation in these mice, showing us that the ACC-1 enzyme misregulation actually causes the fat accumulation we see in the disease — and that there are possible treatment pathways,” Kalsotra said.

To confirm that the effects they saw were only driven by the liver, rather than an interplay with muscle, the researchers compared their mice with another line of mice that express the mutated gene solely in muscle tissue. The researchers observed no issues with drug metabolism or fatty liver development.

“These findings really highlight the importance of studying the effects of myotonic dystrophy within individual tissues, and then evaluating their respective contributions to the metabolic dysfunction that is seen in these patients,” Kalsotra said. “We can’t just focus on one tissue type and completely ignore others.” 

Kalsotra hopes for his group to next partner with clinicians to study biopsied liver tissues from human patients with myotonic dystrophy. If the pathology in human livers is confirmed to match that seen in the mouse model, the model could be useful for screening future therapeutics for toxicity and sensitivity. 

“This will help us to ensure the effectiveness of prospective treatments that are being developed to treat this disease, as well as accordingly adjust dosages, keeping in mind that metabolism in the liver is altered for these patients,” Kalsotra said.

The National Institutes of Health, the Muscular Dystrophy Association, the Chan-Zuckerberg Biohub Chicago and the Beckman Fellowship from the Center for Advanced Study at the U. of I. supported this work. Co-authors included Dewald, Illinois postdoctoral researcher Haneui Bae, graduate students Oluwafolajimi Adesanya, Jessica Derham and Ullas Chembazhi, and undergraduate student Andrew Gupta.

Editor's note:

To reach Auinash Kalsotra, email kalsotra@illinois.edu.

The paper “Altered drug metabolism and increased susceptibility to fatty liver disease in a mouse model of myotonic dystrophy” is available online. DOI: 10.1038/s41467-024-53378-z

The National Institutes of Health supported this work through grants R01HL126845 and R01AA010154.

Read Next

Humanities Diptych image with book cover of "The New Internationals" and a headshot of English professor David Wright Faladé

English professor’s novel tells of love triangle in post-WWII Paris, based on his family history

CHAMPAIGN, Ill. — A new novel by University of Illinois Urbana-Champaign English professor David Wright Faladé tells the story of three people in a love triangle in post-World War II Paris. The characters in “The New Internationals” — a young French woman who has survived the Holocaust, a university student from West Africa and a […]

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010